1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
|
##################################
Expressions and Control Structures
##################################
.. index:: ! parameter, parameter;input, parameter;output
Input Parameters and Output Parameters
======================================
As in Javascript, functions may take parameters as input;
unlike in Javascript and C, they may also return arbitrary number of
parameters as output.
Input Parameters
----------------
The input parameters are declared the same way as variables are. As an
exception, unused parameters can omit the variable name.
For example, suppose we want our contract to
accept one kind of external calls with two integers, we would write
something like::
contract Simple {
function taker(uint _a, uint _b) {
// do something with _a and _b.
}
}
Output Parameters
-----------------
The output parameters can be declared with the same syntax after the
``returns`` keyword. For example, suppose we wished to return two results:
the sum and the product of the two given integers, then we would
write::
contract Simple {
function arithmetics(uint _a, uint _b) returns (uint o_sum, uint o_product) {
o_sum = _a + _b;
o_product = _a * _b;
}
}
The names of output parameters can be omitted.
The output values can also be specified using ``return`` statements.
The ``return`` statements are also capable of returning multiple
values, see :ref:`multi-return`.
Return parameters are initialized to zero; if they are not explicitly
set, they stay to be zero.
Input parameters and output parameters can be used as expressions in
the function body. There, they are also usable in the left-hand side
of assignment.
.. index:: if, else, while, do/while, for, break, continue, return, switch, goto
Control Structures
===================
Most of the control structures from JavaScript are available in Solidity
except for ``switch`` and ``goto``. So
there is: ``if``, ``else``, ``while``, ``do``, ``for``, ``break``, ``continue``, ``return``, ``? :``, with
the usual semantics known from C or JavaScript.
Parentheses can *not* be omitted for conditionals, but curly brances can be omitted
around single-statement bodies.
Note that there is no type conversion from non-boolean to boolean types as
there is in C and JavaScript, so ``if (1) { ... }`` is *not* valid
Solidity.
.. _multi-return:
Returning Multiple Values
-------------------------
When a function has multiple output parameters, ``return (v0, v1, ...,
vn)`` can return multiple values. The number of components must be
the same as the number of output parameters.
.. index:: ! function;call, function;internal, function;external
.. _function-calls:
Function Calls
==============
Internal Function Calls
-----------------------
Functions of the current contract can be called directly ("internally"), also recursively, as seen in
this nonsensical example::
contract C {
function g(uint a) returns (uint ret) { return f(); }
function f() returns (uint ret) { return g(7) + f(); }
}
These function calls are translated into simple jumps inside the EVM. This has
the effect that the current memory is not cleared, i.e. passing memory references
to internally-called functions is very efficient. Only functions of the same
contract can be called internally.
External Function Calls
-----------------------
The expressions ``this.g(8);`` and ``c.g(2);`` (where ``c`` is a contract
instance) are also valid function calls, but this time, the function
will be called "externally", via a message call and not directly via jumps.
Please note that function calls on ``this`` cannot be used in the constructor, as the
actual contract has not been created yet.
Functions of other contracts have to be called externally. For an external call,
all function arguments have to be copied to memory.
When calling functions of other contracts, the amount of Wei sent with the call and
the gas can be specified with special options ``.value()`` and ``.gas()``, respectively::
contract InfoFeed {
function info() payable returns (uint ret) { return 42; }
}
contract Consumer {
InfoFeed feed;
function setFeed(address addr) { feed = InfoFeed(addr); }
function callFeed() { feed.info.value(10).gas(800)(); }
}
The modifier ``payable`` has to be used for ``info``, because otherwise,
we would not be able to send Ether to it in the call ``feed.info.value(10).gas(800)()``.
Note that the expression ``InfoFeed(addr)`` performs an explicit type conversion stating
that "we know that the type of the contract at the given address is ``InfoFeed``" and
this does not execute a constructor. Explicit type conversions have to be
handled with extreme caution. Never call a function on a contract where you
are not sure about its type.
We could also have used ``function setFeed(InfoFeed _feed) { feed = _feed; }`` directly.
Be careful about the fact that ``feed.info.value(10).gas(800)``
only (locally) sets the value and amount of gas sent with the function call and only the
parentheses at the end perform the actual call.
Function calls cause exceptions if the called contract does not exist (in the
sense that the account does not contain code) or if the called contract itself
throws an exception or goes out of gas.
.. warning::
Any interaction with another contract imposes a potential danger, especially
if the source code of the contract is not known in advance. The current
contract hands over control to the called contract and that may potentially
do just about anything. Even if the called contract inherits from a known parent contract,
the inheriting contract is only required to have a correct interface. The
implementation of the contract, however, can be completely arbitrary and thus,
pose a danger. In addition, be prepared in case it calls into other contracts of
your system or even back into the calling contract before the first
call returns. This means
that the called contract can change state variables of the calling contract
via its functions. Write your functions in a way that, for example, calls to
external functions happen after any changes to state variables in your contract
so your contract is not vulnerable to a reentrancy exploit.
Named Calls and Anonymous Function Parameters
---------------------------------------------
Function call arguments can also be given by name, in any order,
if they are enclosed in ``{ }`` as can be seen in the following
example. The argument list has to coincide by name with the list of
parameters from the function declaration, but can be in arbitrary order.
::
pragma solidity ^0.4.0;
contract C {
function f(uint key, uint value) { ... }
function g() {
// named arguments
f({value: 2, key: 3});
}
}
Omitted Function Parameter Names
--------------------------------
The names of unused parameters (especially return parameters) can be omitted.
Those names will still be present on the stack, but they are inaccessible.
::
pragma solidity ^0.4.0;
contract C {
// omitted name for parameter
function func(uint k, uint) returns(uint) {
return k;
}
}
.. index:: ! new, contracts;creating
.. _creating-contracts:
Creating Contracts via ``new``
==============================
A contract can create a new contract using the ``new`` keyword. The full
code of the contract being created has to be known in advance, so recursive
creation-dependencies are not possible.
::
pragma solidity ^0.4.0;
contract D {
uint x;
function D(uint a) payable {
x = a;
}
}
contract C {
D d = new D(4); // will be executed as part of C's constructor
function createD(uint arg) {
D newD = new D(arg);
}
function createAndEndowD(uint arg, uint amount) {
// Send ether along with the creation
D newD = (new D).value(amount)(arg);
}
}
As seen in the example, it is possible to forward Ether to the creation using the ``.value()`` option,
but it is not possible to limit the amount of gas. If the creation fails
(due to out-of-stack, not enough balance or other problems), an exception
is thrown.
Order of Evaluation of Expressions
==================================
The evaluation order of expressions is not specified (more formally, the order
in which the children of one node in the expression tree are evaluated is not
specified, but they are of course evaluated before the node itself). It is only
guaranteed that statements are executed in order and short-circuiting for
boolean expressions is done. See :ref:`order` for more information.
.. index:: ! assignment
Assignment
==========
.. index:: ! assignment;destructuring
Destructuring Assignments and Returning Multiple Values
-------------------------------------------------------
Solidity internally allows tuple types, i.e. a list of objects of potentially different types whose size is a constant at compile-time. Those tuples can be used to return multiple values at the same time and also assign them to multiple variables (or LValues in general) at the same time::
contract C {
uint[] data;
function f() returns (uint, bool, uint) {
return (7, true, 2);
}
function g() {
// Declares and assigns the variables. Specifying the type explicitly is not possible.
var (x, b, y) = f();
// Assigns to a pre-existing variable.
(x, y) = (2, 7);
// Common trick to swap values -- does not work for non-value storage types.
(x, y) = (y, x);
// Components can be left out (also for variable declarations).
// If the tuple ends in an empty component,
// the rest of the values are discarded.
(data.length,) = f(); // Sets the length to 7
// The same can be done on the left side.
(,data[3]) = f(); // Sets data[3] to 2
// Components can only be left out at the left-hand-side of assignments, with
// one exception:
(x,) = (1,);
// (1,) is the only way to specify a 1-component tuple, because (1) is
// equivalent to 1.
}
}
Complications for Arrays and Structs
------------------------------------
The semantics of assignment are a bit more complicated for non-value types like arrays and structs.
Assigning *to* a state variable always creates an independent copy. On the other hand, assigning to a local variable creates an independent copy only for elementary types, i.e. static types that fit into 32 bytes. If structs or arrays (including ``bytes`` and ``string``) are assigned from a state variable to a local variable, the local variable holds a reference to the original state variable. A second assignment to the local variable does not modify the state but only changes the reference. Assignments to members (or elements) of the local variable *do* change the state.
.. index:: ! scoping, declarations, default value
.. _default-value:
Scoping and Declarations
========================
A variable which is declared will have an initial default value whose byte-representation is all zeros.
The "default values" of variables are the typical "zero-state" of whatever the type is. For example, the default value for a ``bool``
is ``false``. The default value for the ``uint`` or ``int`` types is ``0``. For statically-sized arrays and ``bytes1`` to ``bytes32``, each individual
element will be initialized to the default value corresponding to its type. Finally, for dynamically-sized arrays, ``bytes``
and ``string``, the default value is an empty array or string.
A variable declared anywhere within a function will be in scope for the *entire function*, regardless of where it is declared.
This happens because Solidity inherits its scoping rules from JavaScript.
This is in contrast to many languages where variables are only scoped where they are declared until the end of the semantic block.
As a result, the following code is illegal and cause the compiler to throw an error, ``Identifier already declared``::
pragma solidity ^0.4.0;
contract ScopingErrors {
function scoping() {
uint i = 0;
while (i++ < 1) {
uint same1 = 0;
}
while (i++ < 2) {
uint same1 = 0;// Illegal, second declaration of same1
}
}
function minimalScoping() {
{
uint same2 = 0;
}
{
uint same2 = 0;// Illegal, second declaration of same2
}
}
function forLoopScoping() {
for (uint same3 = 0; same3 < 1; same3++) {
}
for (uint same3 = 0; same3 < 1; same3++) {// Illegal, second declaration of same3
}
}
}
In addition to this, if a variable is declared, it will be initialized at the beginning of the function to its default value.
As a result, the following code is legal, despite being poorly written::
function foo() returns (uint) {
// baz is implicitly initialized as 0
uint bar = 5;
if (true) {
bar += baz;
} else {
uint baz = 10;// never executes
}
return bar;// returns 5
}
.. index:: ! exception, ! throw
Exceptions
==========
There are some cases where exceptions are thrown automatically (see below). You can use the ``throw`` instruction to throw an exception manually. The effect of an exception is that the currently executing call is stopped and reverted (i.e. all changes to the state and balances are undone) and the exception is also "bubbled up" through Solidity function calls (exceptions are ``send`` and the low-level functions ``call``, ``delegatecall`` and ``callcode``, those return ``false`` in case of an exception).
Catching exceptions is not yet possible.
In the following example, we show how ``throw`` can be used to easily revert an Ether transfer and also how to check the return value of ``send``::
pragma solidity ^0.4.0;
contract Sharer {
function sendHalf(address addr) payable returns (uint balance) {
if (!addr.send(msg.value / 2))
throw; // also reverts the transfer to Sharer
return this.balance;
}
}
Currently, Solidity automatically generates a runtime exception in the following situations:
#. If you access an array at a too large or negative index (i.e. ``x[i]`` where ``i >= x.length`` or ``i < 0``).
#. If you access a fixed-length ``bytesN`` at a too large or negative index.
#. If you call a function via a message call but it does not finish properly (i.e. it runs out of gas, has no matching function, or throws an exception itself), except when a low level operation ``call``, ``send``, ``delegatecall`` or ``callcode`` is used. The low level operations never throw exceptions but indicate failures by returning ``false``.
#. If you create a contract using the ``new`` keyword but the contract creation does not finish properly (see above for the definition of "not finish properly").
#. If you divide or modulo by zero (e.g. ``5 / 0`` or ``23 % 0``).
#. If you shift by a negative amount.
#. If you convert a value too big or negative into an enum type.
#. If you perform an external function call targeting a contract that contains no code.
#. If your contract receives Ether via a public function without ``payable`` modifier (including the constructor and the fallback function).
#. If your contract receives Ether via a public getter function.
#. If you call a zero-initialized variable of internal function type.
#. If a ``.transfer()`` fails.
#. If you call ``assert`` with an argument that evaluates to false.
While a user-provided exception is generated in the following situations:
#. Calling ``throw``.
#. Calling ``require`` with an argument that evaluates to ``false``.
Internally, Solidity performs a revert operation (instruction ``0xfd``) when a user-provided exception is thrown or the condition of
a ``require`` call is not met. In contrast, it performs an invalid operation
(instruction ``0xfe``) if a runtime exception is encountered or the condition of an ``assert`` call is not met. In both cases, this causes
the EVM to revert all changes made to the state. The reason for this is that there is no safe way to continue execution, because an expected effect
did not occur. Because we want to retain the atomicity of transactions, the safest thing to do is to revert all changes and make the whole transaction
(or at least call) without effect.
If contracts are written so that ``assert`` is only used to test internal conditions and ``require``
is used in case of malformed input, a formal analysis tool that verifies that the invalid
opcode can never be reached can be used to check for the absence of errors assuming valid inputs.
|