aboutsummaryrefslogtreecommitdiffstats
path: root/CompilerUtils.cpp
blob: dda1736d6461fb6ec07324a2bf0bfb5f52d10ab9 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
/*
    This file is part of cpp-ethereum.

    cpp-ethereum is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    cpp-ethereum is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with cpp-ethereum.  If not, see <http://www.gnu.org/licenses/>.
*/
/**
 * @author Christian <c@ethdev.com>
 * @date 2014
 * Routines used by both the compiler and the expression compiler.
 */

#include <libsolidity/CompilerUtils.h>
#include <libsolidity/AST.h>
#include <libevmcore/Instruction.h>

using namespace std;

namespace dev
{
namespace solidity
{

const unsigned int CompilerUtils::dataStartOffset = 4;

unsigned CompilerUtils::loadFromMemory(unsigned _offset, unsigned _bytes, bool _leftAligned,
                                       bool _fromCalldata, bool _padToWordBoundaries)
{
    if (_bytes == 0)
    {
        m_context << u256(0);
        return 0;
    }
    eth::Instruction load = _fromCalldata ? eth::Instruction::CALLDATALOAD : eth::Instruction::MLOAD;
    solAssert(_bytes <= 32, "Memory load of more than 32 bytes requested.");
    if (_bytes == 32 || _padToWordBoundaries)
    {
        m_context << u256(_offset) << load;
        return 32;
    }
    else
    {
        // load data and add leading or trailing zeros by dividing/multiplying depending on alignment
        u256 shiftFactor = u256(1) << ((32 - _bytes) * 8);
        m_context << shiftFactor;
        if (_leftAligned)
            m_context << eth::Instruction::DUP1;
        m_context << u256(_offset) << load << eth::Instruction::DIV;
        if (_leftAligned)
            m_context << eth::Instruction::MUL;
        return _bytes;
    }
}

unsigned CompilerUtils::storeInMemory(unsigned _offset, Type const& _type, bool _padToWordBoundaries)
{
    solAssert(_type.getCategory() != Type::Category::ByteArray, "Unable to statically store dynamic type.");
    unsigned numBytes = prepareMemoryStore(_type, _padToWordBoundaries);
    if (numBytes > 0)
        m_context << u256(_offset) << eth::Instruction::MSTORE;
    return numBytes;
}

void CompilerUtils::storeInMemoryDynamic(Type const& _type, bool _padToWordBoundaries)
{
    if (_type.getCategory() == Type::Category::ByteArray)
    {
        auto const& type = dynamic_cast<ByteArrayType const&>(_type);

        if (type.getLocation() == ByteArrayType::Location::CallData)
        {
            m_context << eth::Instruction::CALLDATASIZE << u256(0) << eth::Instruction::DUP3
                      << eth::Instruction::CALLDATACOPY
                      << eth::Instruction::CALLDATASIZE << eth::Instruction::ADD;
        }
        else
        {
            solAssert(type.getLocation() == ByteArrayType::Location::Storage, "Memory byte arrays not yet implemented.");
            m_context << eth::Instruction::DUP1 << eth::Instruction::SLOAD;
            // stack here: memory_offset storage_offset length_bytes
            // jump to end if length is zero
            m_context << eth::Instruction::DUP1 << eth::Instruction::ISZERO;
            eth::AssemblyItem loopEnd = m_context.newTag();
            m_context.appendConditionalJumpTo(loopEnd);
            // compute memory end offset
            m_context << eth::Instruction::DUP3 << eth::Instruction::ADD << eth::Instruction::SWAP2;
            // actual array data is stored at SHA3(storage_offset)
            m_context << eth::Instruction::SWAP1;
            CompilerUtils(m_context).computeHashStatic();
            m_context << eth::Instruction::SWAP1;

            // stack here: memory_end_offset storage_data_offset memory_offset
            eth::AssemblyItem loopStart = m_context.newTag();
            m_context << loopStart
                      // load and store
                      << eth::Instruction::DUP2 << eth::Instruction::SLOAD
                      << eth::Instruction::DUP2 << eth::Instruction::MSTORE
                      // increment storage_data_offset by 1
                      << eth::Instruction::SWAP1 << u256(1) << eth::Instruction::ADD
                      // increment memory offset by 32
                      << eth::Instruction::SWAP1 << u256(32) << eth::Instruction::ADD
                      // check for loop condition
                      << eth::Instruction::DUP1 << eth::Instruction::DUP4 << eth::Instruction::GT;
            m_context.appendConditionalJumpTo(loopStart);
            m_context << loopEnd << eth::Instruction::POP << eth::Instruction::POP;
        }
    }
    else
    {
        unsigned numBytes = prepareMemoryStore(_type, _padToWordBoundaries);
        if (numBytes > 0)
        {
            m_context << eth::Instruction::DUP2 << eth::Instruction::MSTORE;
            m_context << u256(numBytes) << eth::Instruction::ADD;
        }
    }
}

void CompilerUtils::moveToStackVariable(VariableDeclaration const& _variable)
{
    unsigned const stackPosition = m_context.baseToCurrentStackOffset(m_context.getBaseStackOffsetOfVariable(_variable));
    unsigned const size = _variable.getType()->getSizeOnStack();
    // move variable starting from its top end in the stack
    if (stackPosition - size + 1 > 16)
        BOOST_THROW_EXCEPTION(CompilerError() << errinfo_sourceLocation(_variable.getLocation())
                                              << errinfo_comment("Stack too deep."));
    for (unsigned i = 0; i < size; ++i)
        m_context << eth::swapInstruction(stackPosition - size + 1) << eth::Instruction::POP;
}

void CompilerUtils::copyToStackTop(unsigned _stackDepth, Type const& _type)
{
    if (_stackDepth > 16)
        BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Stack too deep."));
    unsigned const size = _type.getSizeOnStack();
    for (unsigned i = 0; i < size; ++i)
        m_context << eth::dupInstruction(_stackDepth);
}

void CompilerUtils::popStackElement(Type const& _type)
{
    unsigned const size = _type.getSizeOnStack();
    for (unsigned i = 0; i < size; ++i)
        m_context << eth::Instruction::POP;
}

unsigned CompilerUtils::getSizeOnStack(vector<shared_ptr<Type const>> const& _variableTypes)
{
    unsigned size = 0;
    for (shared_ptr<Type const> const& type: _variableTypes)
        size += type->getSizeOnStack();
    return size;
}

void CompilerUtils::computeHashStatic(Type const& _type, bool _padToWordBoundaries)
{
    unsigned length = storeInMemory(0, _type, _padToWordBoundaries);
    m_context << u256(length) << u256(0) << eth::Instruction::SHA3;
}

void CompilerUtils::copyByteArrayToStorage(ByteArrayType const& _targetType,
                                           ByteArrayType const& _sourceType) const
{
    // stack layout: [source_ref] target_ref (top)
    // need to leave target_ref on the stack at the end
    solAssert(_targetType.getLocation() == ByteArrayType::Location::Storage, "");

    switch (_sourceType.getLocation())
    {
    case ByteArrayType::Location::CallData:
    {
        // @todo this does not take length into account. It also assumes that after "CALLDATALENGTH" we only have zeros.
        // fetch old length and convert to words
        m_context << eth::Instruction::DUP1 << eth::Instruction::SLOAD;
        m_context << u256(31) << eth::Instruction::ADD
                  << u256(32) << eth::Instruction::SWAP1 << eth::Instruction::DIV;
        // stack here: target_ref target_length_words
        // actual array data is stored at SHA3(storage_offset)
        m_context << eth::Instruction::DUP2;
        CompilerUtils(m_context).computeHashStatic();
        // compute target_data_end
        m_context << eth::Instruction::DUP1 << eth::Instruction::SWAP2 << eth::Instruction::ADD
                  << eth::Instruction::SWAP1;
        // stack here: target_ref target_data_end target_data_ref
        // store length (in bytes)
        m_context << eth::Instruction::CALLDATASIZE;
        m_context << eth::Instruction::DUP1 << eth::Instruction::DUP5 << eth::Instruction::SSTORE;
        // jump to end if length is zero
        m_context << eth::Instruction::ISZERO;
        eth::AssemblyItem copyLoopEnd = m_context.newTag();
        m_context.appendConditionalJumpTo(copyLoopEnd);
        // store start offset
        m_context << u256(0);
        // stack now: target_ref target_data_end target_data_ref calldata_offset
        eth::AssemblyItem copyLoopStart = m_context.newTag();
        m_context << copyLoopStart
                  // copy from calldata and store
                  << eth::Instruction::DUP1 << eth::Instruction::CALLDATALOAD
                  << eth::Instruction::DUP3 << eth::Instruction::SSTORE
                  // increment target_data_ref by 1
                  << eth::Instruction::SWAP1 << u256(1) << eth::Instruction::ADD
                  // increment calldata_offset by 32
                  << eth::Instruction::SWAP1 << u256(32) << eth::Instruction::ADD
                  // check for loop condition
                  << eth::Instruction::DUP1 << eth::Instruction::CALLDATASIZE << eth::Instruction::GT;
        m_context.appendConditionalJumpTo(copyLoopStart);
        m_context << eth::Instruction::POP;
        m_context << copyLoopEnd;

        // now clear leftover bytes of the old value
        // stack now: target_ref target_data_end target_data_ref
        clearStorageLoop();

        m_context << eth::Instruction::POP;
        break;
    }
    case ByteArrayType::Location::Storage:
    {
        // this copies source to target and also clears target if it was larger

        // stack: source_ref target_ref
        // store target_ref
        m_context << eth::Instruction::SWAP1 << eth::Instruction::DUP2;
        // fetch lengthes
        m_context << eth::Instruction::DUP1 << eth::Instruction::SLOAD << eth::Instruction::SWAP2
                  << eth::Instruction::DUP1 << eth::Instruction::SLOAD;
        // stack: target_ref target_len_bytes target_ref source_ref source_len_bytes
        // store new target length
        m_context << eth::Instruction::DUP1 << eth::Instruction::DUP4 << eth::Instruction::SSTORE;
        // compute hashes (data positions)
        m_context << eth::Instruction::SWAP2;
        CompilerUtils(m_context).computeHashStatic();
        m_context << eth::Instruction::SWAP1;
        CompilerUtils(m_context).computeHashStatic();
        // stack: target_ref target_len_bytes source_len_bytes target_data_pos source_data_pos
        // convert lengthes from bytes to storage slots
        m_context << u256(31) << u256(32) << eth::Instruction::DUP1 << eth::Instruction::DUP3
                  << eth::Instruction::DUP8 << eth::Instruction::ADD << eth::Instruction::DIV
                  << eth::Instruction::SWAP2
                  << eth::Instruction::DUP6 << eth::Instruction::ADD << eth::Instruction::DIV;
        // stack: target_ref target_len_bytes source_len_bytes target_data_pos source_data_pos target_len source_len
        // @todo we might be able to go without a third counter
        m_context << u256(0);
        // stack: target_ref target_len_bytes source_len_bytes target_data_pos source_data_pos target_len source_len counter
        eth::AssemblyItem copyLoopStart = m_context.newTag();
        m_context << copyLoopStart;
        // check for loop condition
        m_context << eth::Instruction::DUP1 << eth::Instruction::DUP3
                   << eth::Instruction::GT << eth::Instruction::ISZERO;
        eth::AssemblyItem copyLoopEnd = m_context.newTag();
        m_context.appendConditionalJumpTo(copyLoopEnd);
        // copy
        m_context << eth::Instruction::DUP4 << eth::Instruction::DUP2 << eth::Instruction::ADD
                  << eth::Instruction::SLOAD
                  << eth::Instruction::DUP6 << eth::Instruction::DUP3 << eth::Instruction::ADD
                  << eth::Instruction::SSTORE;
        // increment
        m_context << u256(1) << eth::Instruction::ADD;
        m_context.appendJumpTo(copyLoopStart);
        m_context << copyLoopEnd;

        // zero-out leftovers in target
        // stack: target_ref target_len_bytes source_len_bytes target_data_pos source_data_pos target_len source_len counter
        // add counter to target_data_pos
        m_context << eth::Instruction::DUP5 << eth::Instruction::ADD
                  << eth::Instruction::SWAP5 << eth::Instruction::POP;
        // stack: target_ref target_len_bytes target_data_pos_updated target_data_pos source_data_pos target_len source_len
        // add length to target_data_pos to get target_data_end
        m_context << eth::Instruction::POP << eth::Instruction::DUP3 << eth::Instruction::ADD
                  << eth::Instruction::SWAP4
                  << eth::Instruction::POP  << eth::Instruction::POP << eth::Instruction::POP;
        // stack: target_ref target_data_end target_data_pos_updated
        clearStorageLoop();
        m_context << eth::Instruction::POP;
        break;
    }
    default:
        solAssert(false, "Given byte array location not implemented.");
    }
}

void CompilerUtils::clearByteArray(ByteArrayType const& _type) const
{
    solAssert(_type.getLocation() == ByteArrayType::Location::Storage, "");

    // fetch length
    m_context << eth::Instruction::DUP1 << eth::Instruction::SLOAD;
    // set length to zero
    m_context << u256(0) << eth::Instruction::DUP3 << eth::Instruction::SSTORE;
    // convert length from bytes to storage slots
    m_context << u256(31) << eth::Instruction::ADD
              << u256(32) << eth::Instruction::SWAP1 << eth::Instruction::DIV;
    // compute data positions
    m_context << eth::Instruction::SWAP1;
    CompilerUtils(m_context).computeHashStatic();
    // stack: len data_pos
    m_context << eth::Instruction::SWAP1 << eth::Instruction::DUP2 << eth::Instruction::ADD
              << eth::Instruction::SWAP1;
    clearStorageLoop();
    // cleanup
    m_context << eth::Instruction::POP;
}

unsigned CompilerUtils::prepareMemoryStore(Type const& _type, bool _padToWordBoundaries) const
{
    unsigned _encodedSize = _type.getCalldataEncodedSize();
    unsigned numBytes = _padToWordBoundaries ? getPaddedSize(_encodedSize) : _encodedSize;
    bool leftAligned = _type.getCategory() == Type::Category::String;
    if (numBytes == 0)
        m_context << eth::Instruction::POP;
    else
    {
        solAssert(numBytes <= 32, "Memory store of more than 32 bytes requested.");
        if (numBytes != 32 && !leftAligned && !_padToWordBoundaries)
            // shift the value accordingly before storing
            m_context << (u256(1) << ((32 - numBytes) * 8)) << eth::Instruction::MUL;
    }
    return numBytes;
}

void CompilerUtils::clearStorageLoop() const
{
    // stack: end_pos pos
    eth::AssemblyItem loopStart = m_context.newTag();
    m_context << loopStart;
    // check for loop condition
    m_context << eth::Instruction::DUP1 << eth::Instruction::DUP3
               << eth::Instruction::GT << eth::Instruction::ISZERO;
    eth::AssemblyItem zeroLoopEnd = m_context.newTag();
    m_context.appendConditionalJumpTo(zeroLoopEnd);
    // zero out
    m_context << u256(0) << eth::Instruction::DUP2 << eth::Instruction::SSTORE;
    // increment
    m_context << u256(1) << eth::Instruction::ADD;
    m_context.appendJumpTo(loopStart);
    // cleanup
    m_context << zeroLoopEnd;
    m_context << eth::Instruction::POP;
}

}
}