aboutsummaryrefslogtreecommitdiffstats
path: root/Compiler.cpp
blob: 43cbc462ec98f83debe536d0377048cf50a76d6c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
/*
    This file is part of cpp-ethereum.

    cpp-ethereum is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    cpp-ethereum is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with cpp-ethereum.  If not, see <http://www.gnu.org/licenses/>.
*/
/**
 * @author Christian <c@ethdev.com>
 * @date 2014
 * Solidity AST to EVM bytecode compiler.
 */

#include <cassert>
#include <utility>
#include <libsolidity/AST.h>
#include <libsolidity/Compiler.h>

namespace dev {
namespace solidity {

void CompilerContext::setLabelPosition(uint32_t _label, uint32_t _position)
{
    assert(m_labelPositions.find(_label) == m_labelPositions.end());
    m_labelPositions[_label] = _position;
}

uint32_t CompilerContext::getLabelPosition(uint32_t _label) const
{
    auto iter = m_labelPositions.find(_label);
    assert(iter != m_labelPositions.end());
    return iter->second;
}

void ExpressionCompiler::compile(Expression& _expression)
{
    m_assemblyItems.clear();
    _expression.accept(*this);
}

bytes ExpressionCompiler::getAssembledBytecode() const
{
    bytes assembled;
    assembled.reserve(m_assemblyItems.size());

    // resolve label references
    for (uint32_t pos = 0; pos < m_assemblyItems.size(); ++pos)
    {
        AssemblyItem const& item = m_assemblyItems[pos];
        if (item.getType() == AssemblyItem::Type::LABEL)
            m_context.setLabelPosition(item.getLabel(), pos + 1);
    }

    for (AssemblyItem const& item: m_assemblyItems)
        if (item.getType() == AssemblyItem::Type::LABELREF)
            assembled.push_back(m_context.getLabelPosition(item.getLabel()));
        else
            assembled.push_back(item.getData());

    return assembled;
}

AssemblyItems ExpressionCompiler::compileExpression(CompilerContext& _context,
                                                    Expression& _expression)
{
    ExpressionCompiler compiler(_context);
    compiler.compile(_expression);
    return compiler.getAssemblyItems();
}

void ExpressionCompiler::endVisit(Assignment& _assignment)
{
    Expression& rightHandSide = _assignment.getRightHandSide();
    Token::Value op = _assignment.getAssignmentOperator();
    if (op != Token::ASSIGN)
    {
        // compound assignment
        // @todo retrieve lvalue value
        rightHandSide.accept(*this);
        Type const& resultType = *_assignment.getType();
        cleanHigherOrderBitsIfNeeded(*rightHandSide.getType(), resultType);
        appendOrdinaryBinaryOperatorCode(Token::AssignmentToBinaryOp(op), resultType);
    }
    else
        rightHandSide.accept(*this);
    // @todo store value
}

void ExpressionCompiler::endVisit(UnaryOperation& _unaryOperation)
{
    //@todo type checking and creating code for an operator should be in the same place:
    // the operator should know how to convert itself and to which types it applies, so
    // put this code together with "Type::acceptsBinary/UnaryOperator" into a class that
    // represents the operator
    switch (_unaryOperation.getOperator())
    {
    case Token::NOT: // !
        append(eth::Instruction::NOT);
        break;
    case Token::BIT_NOT: // ~
        append(eth::Instruction::BNOT);
        break;
    case Token::DELETE: // delete
        // a -> a xor a (= 0).
        // @todo this should also be an assignment
        // @todo semantics change for complex types
        append(eth::Instruction::DUP1);
        append(eth::Instruction::XOR);
        break;
    case Token::INC: // ++ (pre- or postfix)
        // @todo this should also be an assignment
        if (_unaryOperation.isPrefixOperation())
        {
            append(eth::Instruction::PUSH1);
            append(1);
            append(eth::Instruction::ADD);
        }
        break;
    case Token::DEC: // -- (pre- or postfix)
        // @todo this should also be an assignment
        if (_unaryOperation.isPrefixOperation())
        {
            append(eth::Instruction::PUSH1);
            append(1);
            append(eth::Instruction::SWAP1); //@todo avoid this
            append(eth::Instruction::SUB);
        }
        break;
    case Token::ADD: // +
        // unary add, so basically no-op
        break;
    case Token::SUB: // -
        // unary -x translates into "0-x"
        append(eth::Instruction::PUSH1);
        append(0);
        append(eth::Instruction::SUB);
        break;
    default:
        assert(false); // invalid operation
    }
}

bool ExpressionCompiler::visit(BinaryOperation& _binaryOperation)
{
    Expression& leftExpression = _binaryOperation.getLeftExpression();
    Expression& rightExpression = _binaryOperation.getRightExpression();
    Type const& resultType = *_binaryOperation.getType();
    Token::Value const op = _binaryOperation.getOperator();

    if (op == Token::AND || op == Token::OR)
    {
        // special case: short-circuiting
        appendAndOrOperatorCode(_binaryOperation);
    }
    else if (Token::isCompareOp(op))
    {
        leftExpression.accept(*this);
        rightExpression.accept(*this);

        // the types to compare have to be the same, but the resulting type is always bool
        assert(*leftExpression.getType() == *rightExpression.getType());
        appendCompareOperatorCode(op, *leftExpression.getType());
    }
    else
    {
        leftExpression.accept(*this);
        cleanHigherOrderBitsIfNeeded(*leftExpression.getType(), resultType);
        rightExpression.accept(*this);
        cleanHigherOrderBitsIfNeeded(*rightExpression.getType(), resultType);
        appendOrdinaryBinaryOperatorCode(op, resultType);
    }

    // do not visit the child nodes, we already did that explicitly
    return false;
}

void ExpressionCompiler::endVisit(FunctionCall& _functionCall)
{
    if (_functionCall.isTypeConversion())
    {
        //@todo binary representation for all supported types (bool and int) is the same, so no-op
        // here for now.
    }
    else
    {
        //@todo
    }
}

void ExpressionCompiler::endVisit(MemberAccess&)
{

}

void ExpressionCompiler::endVisit(IndexAccess&)
{

}

void ExpressionCompiler::endVisit(Identifier&)
{

}

void ExpressionCompiler::endVisit(Literal& _literal)
{
    switch (_literal.getType()->getCategory())
    {
    case Type::Category::INTEGER:
    case Type::Category::BOOL:
    {
        bytes value = _literal.getType()->literalToBigEndian(_literal);
        assert(value.size() <= 32);
        assert(!value.empty());
        append(static_cast<byte>(eth::Instruction::PUSH1) + static_cast<byte>(value.size() - 1));
        append(value);
        break;
    }
    default:
        assert(false); // @todo
    }
}

void ExpressionCompiler::cleanHigherOrderBitsIfNeeded(const Type& _typeOnStack, const Type& _targetType)
{
    // If the type of one of the operands is extended, we need to remove all
    // higher-order bits that we might have ignored in previous operations.
    // @todo: store in the AST whether the operand might have "dirty" higher
    // order bits

    if (_typeOnStack == _targetType)
        return;
    if (_typeOnStack.getCategory() == Type::Category::INTEGER &&
            _targetType.getCategory() == Type::Category::INTEGER)
    {
        //@todo
    }
    else
    {
        // If we get here, there is either an implementation missing to clean higher oder bits
        // for non-integer types that are explicitly convertible or we got here in error.
        assert(!_typeOnStack.isExplicitlyConvertibleTo(_targetType));
        assert(false); // these types should not be convertible.
    }
}

void ExpressionCompiler::appendAndOrOperatorCode(BinaryOperation& _binaryOperation)
{
    Token::Value const op = _binaryOperation.getOperator();
    assert(op == Token::OR || op == Token::AND);

    _binaryOperation.getLeftExpression().accept(*this);
    append(eth::Instruction::DUP1);
    if (op == Token::AND)
        append(eth::Instruction::NOT);
    uint32_t endLabel = appendConditionalJump();
    _binaryOperation.getRightExpression().accept(*this);
    appendLabel(endLabel);
}

void ExpressionCompiler::appendCompareOperatorCode(Token::Value _operator, Type const& _type)
{
    if (_operator == Token::EQ || _operator == Token::NE)
    {
        append(eth::Instruction::EQ);
        if (_operator == Token::NE)
            append(eth::Instruction::NOT);
    }
    else
    {
        IntegerType const* type = dynamic_cast<IntegerType const*>(&_type);
        assert(type);
        bool const isSigned = type->isSigned();

        // note that EVM opcodes compare like "stack[0] < stack[1]",
        // but our left value is at stack[1], so everyhing is reversed.
        switch (_operator)
        {
        case Token::GTE:
            append(isSigned ? eth::Instruction::SGT : eth::Instruction::GT);
            append(eth::Instruction::NOT);
            break;
        case Token::LTE:
            append(isSigned ? eth::Instruction::SLT : eth::Instruction::LT);
            append(eth::Instruction::NOT);
            break;
        case Token::GT:
            append(isSigned ? eth::Instruction::SLT : eth::Instruction::LT);
            break;
        case Token::LT:
            append(isSigned ? eth::Instruction::SGT : eth::Instruction::GT);
            break;
        default:
            assert(false);
        }
    }
}

void ExpressionCompiler::appendOrdinaryBinaryOperatorCode(Token::Value _operator, Type const& _type)
{
    if (Token::isArithmeticOp(_operator))
        appendArithmeticOperatorCode(_operator, _type);
    else if (Token::isBitOp(_operator))
        appendBitOperatorCode(_operator);
    else if (Token::isShiftOp(_operator))
        appendShiftOperatorCode(_operator);
    else
        assert(false); // unknown binary operator
}

void ExpressionCompiler::appendArithmeticOperatorCode(Token::Value _operator, Type const& _type)
{
    IntegerType const* type = dynamic_cast<IntegerType const*>(&_type);
    assert(type);
    bool const isSigned = type->isSigned();

    switch (_operator)
    {
    case Token::ADD:
        append(eth::Instruction::ADD);
        break;
    case Token::SUB:
        append(eth::Instruction::SWAP1);
        append(eth::Instruction::SUB);
        break;
    case Token::MUL:
        append(eth::Instruction::MUL);
        break;
    case Token::DIV:
        append(isSigned ? eth::Instruction::SDIV : eth::Instruction::DIV);
        break;
    case Token::MOD:
        append(isSigned ? eth::Instruction::SMOD : eth::Instruction::MOD);
        break;
    default:
        assert(false);
    }
}

void ExpressionCompiler::appendBitOperatorCode(Token::Value _operator)
{
    switch (_operator)
    {
    case Token::BIT_OR:
        append(eth::Instruction::OR);
        break;
    case Token::BIT_AND:
        append(eth::Instruction::AND);
        break;
    case Token::BIT_XOR:
        append(eth::Instruction::XOR);
        break;
    default:
        assert(false);
    }
}

void ExpressionCompiler::appendShiftOperatorCode(Token::Value _operator)
{
    switch (_operator)
    {
    case Token::SHL:
        assert(false); //@todo
        break;
    case Token::SAR:
        assert(false); //@todo
        break;
    default:
        assert(false);
    }
}

uint32_t ExpressionCompiler::appendConditionalJump()
{
    uint32_t label = m_context.dispenseNewLabel();
    append(eth::Instruction::PUSH1);
    appendLabelref(label);
    append(eth::Instruction::JUMPI);
    return label;
}

void ExpressionCompiler::append(bytes const& _data)
{
    m_assemblyItems.reserve(m_assemblyItems.size() + _data.size());
    for (byte b: _data)
        append(b);
}



}
}