aboutsummaryrefslogtreecommitdiffstats
path: root/Compiler.cpp
blob: c419f484d9e86f4c3a881edad8219869d06adffb (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
/*
    This file is part of cpp-ethereum.

    cpp-ethereum is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    cpp-ethereum is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with cpp-ethereum.  If not, see <http://www.gnu.org/licenses/>.
*/
/**
 * @author Christian <c@ethdev.com>
 * @date 2014
 * Solidity compiler.
 */

#include <algorithm>
#include <boost/range/adaptor/reversed.hpp>
#include <libevmcore/Instruction.h>
#include <libevmcore/Assembly.h>
#include <libsolidity/AST.h>
#include <libsolidity/Compiler.h>
#include <libsolidity/ExpressionCompiler.h>
#include <libsolidity/CompilerUtils.h>
#include <libsolidity/CallGraph.h>

using namespace std;

namespace dev {
namespace solidity {

void Compiler::compileContract(ContractDefinition const& _contract,
                               map<ContractDefinition const*, bytes const*> const& _contracts)
{
    m_context = CompilerContext(); // clear it just in case
    initializeContext(_contract, _contracts);

    for (ContractDefinition const* contract: _contract.getLinearizedBaseContracts())
    {
        for (ASTPointer<FunctionDefinition> const& function: contract->getDefinedFunctions())
            if (!function->isConstructor())
                m_context.addFunction(*function);

        for (ASTPointer<VariableDeclaration> const& vardecl: contract->getStateVariables())
            if (vardecl->isPublic())
                m_context.addFunction(*vardecl);

        for (ASTPointer<ModifierDefinition> const& modifier: contract->getFunctionModifiers())
            m_context.addModifier(*modifier);
    }

    appendFunctionSelector(_contract);
    for (ContractDefinition const* contract: _contract.getLinearizedBaseContracts())
    {
        for (ASTPointer<FunctionDefinition> const& function: contract->getDefinedFunctions())
            if (!function->isConstructor())
                function->accept(*this);

        for (ASTPointer<VariableDeclaration> const& vardecl: contract->getStateVariables())
            if (vardecl->isPublic())
                generateAccessorCode(*vardecl);
    }

    // Swap the runtime context with the creation-time context
    swap(m_context, m_runtimeContext);
    initializeContext(_contract, _contracts);
    packIntoContractCreator(_contract, m_runtimeContext);
}

void Compiler::initializeContext(ContractDefinition const& _contract,
                                 map<ContractDefinition const*, bytes const*> const& _contracts)
{
    m_context.setCompiledContracts(_contracts);
    registerStateVariables(_contract);
}

void Compiler::packIntoContractCreator(ContractDefinition const& _contract, CompilerContext const& _runtimeContext)
{
    std::vector<ContractDefinition const*> const& bases = _contract.getLinearizedBaseContracts();

    // Make all modifiers known to the context.
    for (ContractDefinition const* contract: bases)
        for (ASTPointer<ModifierDefinition> const& modifier: contract->getFunctionModifiers())
            m_context.addModifier(*modifier);

    // arguments for base constructors, filled in derived-to-base order
    map<ContractDefinition const*, vector<ASTPointer<Expression>> const*> baseArguments;
    set<FunctionDefinition const*> neededFunctions;
    set<ASTNode const*> nodesUsedInConstructors;

    // Determine the arguments that are used for the base constructors and also which functions
    // are needed at compile time.
    for (ContractDefinition const* contract: bases)
    {
        if (FunctionDefinition const* constructor = contract->getConstructor())
            nodesUsedInConstructors.insert(constructor);
        for (ASTPointer<InheritanceSpecifier> const& base: contract->getBaseContracts())
        {
            ContractDefinition const* baseContract = dynamic_cast<ContractDefinition const*>(
                                                    base->getName()->getReferencedDeclaration());
            solAssert(baseContract, "");
            if (baseArguments.count(baseContract) == 0)
            {
                baseArguments[baseContract] = &base->getArguments();
                for (ASTPointer<Expression> const& arg: base->getArguments())
                    nodesUsedInConstructors.insert(arg.get());
            }
        }
    }

    auto functionOverrideResolver = [&](string const& _name) -> FunctionDefinition const*
    {
        for (ContractDefinition const* contract: bases)
            for (ASTPointer<FunctionDefinition> const& function: contract->getDefinedFunctions())
                if (!function->isConstructor() && function->getName() == _name)
                    return function.get();
        return nullptr;
    };
    auto modifierOverrideResolver = [&](string const& _name) -> ModifierDefinition const*
    {
        return &m_context.getFunctionModifier(_name);
    };

    neededFunctions = getFunctionsCalled(nodesUsedInConstructors, functionOverrideResolver,
                                         modifierOverrideResolver);

    // First add all overrides (or the functions themselves if there is no override)
    for (FunctionDefinition const* fun: neededFunctions)
    {
        FunctionDefinition const* override = nullptr;
        if (!fun->isConstructor())
            override = functionOverrideResolver(fun->getName());
        if (!!override && neededFunctions.count(override))
            m_context.addFunction(*override);
    }
    // now add the rest
    for (FunctionDefinition const* fun: neededFunctions)
        if (fun->isConstructor() || functionOverrideResolver(fun->getName()) != fun)
            m_context.addFunction(*fun);

    // Call constructors in base-to-derived order.
    // The Constructor for the most derived contract is called later.
    for (unsigned i = 1; i < bases.size(); i++)
    {
        ContractDefinition const* base = bases[bases.size() - i];
        solAssert(base, "");
        FunctionDefinition const* baseConstructor = base->getConstructor();
        if (!baseConstructor)
            continue;
        solAssert(baseArguments[base], "");
        appendBaseConstructorCall(*baseConstructor, *baseArguments[base]);
    }
    if (_contract.getConstructor())
        appendConstructorCall(*_contract.getConstructor());

    eth::AssemblyItem sub = m_context.addSubroutine(_runtimeContext.getAssembly());
    // stack contains sub size
    m_context << eth::Instruction::DUP1 << sub << u256(0) << eth::Instruction::CODECOPY;
    m_context << u256(0) << eth::Instruction::RETURN;

    // note that we have to explicitly include all used functions because of absolute jump
    // labels
    for (FunctionDefinition const* fun: neededFunctions)
        fun->accept(*this);
}

void Compiler::appendBaseConstructorCall(FunctionDefinition const& _constructor,
                                         vector<ASTPointer<Expression>> const& _arguments)
{
    FunctionType constructorType(_constructor);
    eth::AssemblyItem returnLabel = m_context.pushNewTag();
    for (unsigned i = 0; i < _arguments.size(); ++i)
        compileExpression(*_arguments[i], constructorType.getParameterTypes()[i]);
    m_context.appendJumpTo(m_context.getFunctionEntryLabel(_constructor));
    m_context << returnLabel;
}

void Compiler::appendConstructorCall(FunctionDefinition const& _constructor)
{
    eth::AssemblyItem returnTag = m_context.pushNewTag();
    // copy constructor arguments from code to memory and then to stack, they are supplied after the actual program
    unsigned argumentSize = 0;
    for (ASTPointer<VariableDeclaration> const& var: _constructor.getParameters())
        argumentSize += CompilerUtils::getPaddedSize(var->getType()->getCalldataEncodedSize());

    if (argumentSize > 0)
    {
        m_context << u256(argumentSize);
        m_context.appendProgramSize();
        m_context << u256(CompilerUtils::dataStartOffset); // copy it to byte four as expected for ABI calls
        m_context << eth::Instruction::CODECOPY;
        appendCalldataUnpacker(FunctionType(_constructor).getParameterTypes(), true);
    }
    m_context.appendJumpTo(m_context.getFunctionEntryLabel(_constructor));
    m_context << returnTag;
}

set<FunctionDefinition const*> Compiler::getFunctionsCalled(set<ASTNode const*> const& _nodes,
                        function<FunctionDefinition const*(string const&)> const& _resolveFunctionOverrides,
                        function<ModifierDefinition const*(string const&)> const& _resolveModifierOverrides)
{
    CallGraph callgraph(_resolveFunctionOverrides, _resolveModifierOverrides);
    for (ASTNode const* node: _nodes)
        callgraph.addNode(*node);
    return callgraph.getCalls();
}

void Compiler::appendFunctionSelector(ContractDefinition const& _contract)
{
    map<FixedHash<4>, FunctionDescription> interfaceFunctions = _contract.getInterfaceFunctions();
    map<FixedHash<4>, const eth::AssemblyItem> callDataUnpackerEntryPoints;

    // retrieve the function signature hash from the calldata
    m_context << u256(1) << u256(0);
    CompilerUtils(m_context).loadFromMemory(0, 4, false, true);

    // stack now is: 1 0 <funhash>
    for (auto const& it: interfaceFunctions)
    {
        callDataUnpackerEntryPoints.insert(std::make_pair(it.first, m_context.newTag()));
        m_context << eth::dupInstruction(1) << u256(FixedHash<4>::Arith(it.first)) << eth::Instruction::EQ;
        m_context.appendConditionalJumpTo(callDataUnpackerEntryPoints.at(it.first));
    }
    m_context << eth::Instruction::STOP; // function not found

    for (auto const& it: interfaceFunctions)
    {
        FunctionType const* functionType = it.second.getFunctionType();
        m_context << callDataUnpackerEntryPoints.at(it.first);
        eth::AssemblyItem returnTag = m_context.pushNewTag();
        appendCalldataUnpacker(functionType->getParameterTypes());
        m_context.appendJumpTo(m_context.getFunctionEntryLabel(*it.second.getDeclaration()));
        m_context << returnTag;
        appendReturnValuePacker(functionType->getReturnParameterTypes());
    }
}

unsigned Compiler::appendCalldataUnpacker(TypePointers const& _typeParameters, bool _fromMemory)
{
    // We do not check the calldata size, everything is zero-padded.
    unsigned dataOffset = CompilerUtils::dataStartOffset; // the 4 bytes of the function hash signature
    //@todo this can be done more efficiently, saving some CALLDATALOAD calls
    for (TypePointer const& type: _typeParameters)
    {
        unsigned const c_numBytes = type->getCalldataEncodedSize();
        if (c_numBytes > 32)
            BOOST_THROW_EXCEPTION(CompilerError()
                                  << errinfo_comment("Type " + type->toString() + " not yet supported."));
        bool const c_leftAligned = type->getCategory() == Type::Category::STRING;
        bool const c_padToWords = true;
        dataOffset += CompilerUtils(m_context).loadFromMemory(dataOffset, c_numBytes, c_leftAligned,
                                                              !_fromMemory, c_padToWords);
    }
    return dataOffset;
}

void Compiler::appendReturnValuePacker(TypePointers const& _typeParameters)
{
    //@todo this can be also done more efficiently
    unsigned dataOffset = 0;
    unsigned stackDepth = 0;
    for (TypePointer const& type: _typeParameters)
        stackDepth += type->getSizeOnStack();

    for (TypePointer const& type: _typeParameters)
    {
        unsigned numBytes = type->getCalldataEncodedSize();
        if (numBytes > 32)
            BOOST_THROW_EXCEPTION(CompilerError()
                                  << errinfo_comment("Type " + type->toString() + " not yet supported."));
        CompilerUtils(m_context).copyToStackTop(stackDepth, *type);
        ExpressionCompiler::appendTypeConversion(m_context, *type, *type, true);
        bool const c_leftAligned = type->getCategory() == Type::Category::STRING;
        bool const c_padToWords = true;
        dataOffset += CompilerUtils(m_context).storeInMemory(dataOffset, numBytes, c_leftAligned, c_padToWords);
        stackDepth -= type->getSizeOnStack();
    }
    // note that the stack is not cleaned up here
    m_context << u256(dataOffset) << u256(0) << eth::Instruction::RETURN;
}

void Compiler::registerStateVariables(ContractDefinition const& _contract)
{
    for (ContractDefinition const* contract: boost::adaptors::reverse(_contract.getLinearizedBaseContracts()))
        for (ASTPointer<VariableDeclaration> const& variable: contract->getStateVariables())
            m_context.addStateVariable(*variable);
}

bool Compiler::generateAccessorCode(VariableDeclaration const& _varDecl)
{
    m_context.startNewFunction();
    m_returnTag = m_context.newTag();
    m_breakTags.clear();
    m_continueTags.clear();

    // TODO: Work in progress
    m_context << m_context.getFunctionEntryLabel(_varDecl);
    // CompilerUtils(m_context).moveToStackVariable(firstVariable);
    m_context.appendJumpTo(m_returnTag);
    m_context << m_returnTag;

    // TODO: perhaps return void if there are no checks?
    return true;
}

bool Compiler::visit(FunctionDefinition const& _function)
{
    //@todo to simplify this, the calling convention could by changed such that
    // caller puts: [retarg0] ... [retargm] [return address] [arg0] ... [argn]
    // although note that this reduces the size of the visible stack

    m_context.startNewFunction();
    m_returnTag = m_context.newTag();
    m_breakTags.clear();
    m_continueTags.clear();
    m_stackCleanupForReturn = 0;
    m_currentFunction = &_function;
    m_modifierDepth = 0;

    m_context << m_context.getFunctionEntryLabel(_function);

    // stack upon entry: [return address] [arg0] [arg1] ... [argn]
    // reserve additional slots: [retarg0] ... [retargm] [localvar0] ... [localvarp]

    unsigned parametersSize = CompilerUtils::getSizeOnStack(_function.getParameters());
    m_context.adjustStackOffset(parametersSize);
    for (ASTPointer<VariableDeclaration const> const& variable: _function.getParameters())
    {
        m_context.addVariable(*variable, parametersSize);
        parametersSize -= variable->getType()->getSizeOnStack();
    }
    for (ASTPointer<VariableDeclaration const> const& variable: _function.getReturnParameters())
        m_context.addAndInitializeVariable(*variable);
    for (VariableDeclaration const* localVariable: _function.getLocalVariables())
        m_context.addAndInitializeVariable(*localVariable);

    appendModifierOrFunctionCode();

    m_context << m_returnTag;

    // Now we need to re-shuffle the stack. For this we keep a record of the stack layout
    // that shows the target positions of the elements, where "-1" denotes that this element needs
    // to be removed from the stack.
    // Note that the fact that the return arguments are of increasing index is vital for this
    // algorithm to work.

    unsigned const c_argumentsSize = CompilerUtils::getSizeOnStack(_function.getParameters());
    unsigned const c_returnValuesSize = CompilerUtils::getSizeOnStack(_function.getReturnParameters());
    unsigned const c_localVariablesSize = CompilerUtils::getSizeOnStack(_function.getLocalVariables());

    vector<int> stackLayout;
    stackLayout.push_back(c_returnValuesSize); // target of return address
    stackLayout += vector<int>(c_argumentsSize, -1); // discard all arguments
    for (unsigned i = 0; i < c_returnValuesSize; ++i)
        stackLayout.push_back(i);
    stackLayout += vector<int>(c_localVariablesSize, -1);

    while (stackLayout.back() != int(stackLayout.size() - 1))
        if (stackLayout.back() < 0)
        {
            m_context << eth::Instruction::POP;
            stackLayout.pop_back();
        }
        else
        {
            m_context << eth::swapInstruction(stackLayout.size() - stackLayout.back() - 1);
            swap(stackLayout[stackLayout.back()], stackLayout.back());
        }
    //@todo assert that everything is in place now

    m_context << eth::Instruction::JUMP;

    return false;
}

bool Compiler::visit(IfStatement const& _ifStatement)
{
    compileExpression(_ifStatement.getCondition());
    eth::AssemblyItem trueTag = m_context.appendConditionalJump();
    if (_ifStatement.getFalseStatement())
        _ifStatement.getFalseStatement()->accept(*this);
    eth::AssemblyItem endTag = m_context.appendJumpToNew();
    m_context << trueTag;
    _ifStatement.getTrueStatement().accept(*this);
    m_context << endTag;
    return false;
}

bool Compiler::visit(WhileStatement const& _whileStatement)
{
    eth::AssemblyItem loopStart = m_context.newTag();
    eth::AssemblyItem loopEnd = m_context.newTag();
    m_continueTags.push_back(loopStart);
    m_breakTags.push_back(loopEnd);

    m_context << loopStart;
    compileExpression(_whileStatement.getCondition());
    m_context << eth::Instruction::ISZERO;
    m_context.appendConditionalJumpTo(loopEnd);

    _whileStatement.getBody().accept(*this);

    m_context.appendJumpTo(loopStart);
    m_context << loopEnd;

    m_continueTags.pop_back();
    m_breakTags.pop_back();
    return false;
}

bool Compiler::visit(ForStatement const& _forStatement)
{
    eth::AssemblyItem loopStart = m_context.newTag();
    eth::AssemblyItem loopEnd = m_context.newTag();
    m_continueTags.push_back(loopStart);
    m_breakTags.push_back(loopEnd);

    if (_forStatement.getInitializationExpression())
        _forStatement.getInitializationExpression()->accept(*this);

    m_context << loopStart;

    // if there is no terminating condition in for, default is to always be true
    if (_forStatement.getCondition())
    {
        compileExpression(*_forStatement.getCondition());
        m_context << eth::Instruction::ISZERO;
        m_context.appendConditionalJumpTo(loopEnd);
    }

    _forStatement.getBody().accept(*this);

    // for's loop expression if existing
    if (_forStatement.getLoopExpression())
        _forStatement.getLoopExpression()->accept(*this);

    m_context.appendJumpTo(loopStart);
    m_context << loopEnd;

    m_continueTags.pop_back();
    m_breakTags.pop_back();
    return false;
}

bool Compiler::visit(Continue const&)
{
    if (!m_continueTags.empty())
        m_context.appendJumpTo(m_continueTags.back());
    return false;
}

bool Compiler::visit(Break const&)
{
    if (!m_breakTags.empty())
        m_context.appendJumpTo(m_breakTags.back());
    return false;
}

bool Compiler::visit(Return const& _return)
{
    //@todo modifications are needed to make this work with functions returning multiple values
    if (Expression const* expression = _return.getExpression())
    {
        solAssert(_return.getFunctionReturnParameters(), "Invalid return parameters pointer.");
        VariableDeclaration const& firstVariable = *_return.getFunctionReturnParameters()->getParameters().front();
        compileExpression(*expression, firstVariable.getType());
        CompilerUtils(m_context).moveToStackVariable(firstVariable);
    }
    for (unsigned i = 0; i < m_stackCleanupForReturn; ++i)
        m_context << eth::Instruction::POP;
    m_context.appendJumpTo(m_returnTag);
    m_context.adjustStackOffset(m_stackCleanupForReturn);
    return false;
}

bool Compiler::visit(VariableDefinition const& _variableDefinition)
{
    if (Expression const* expression = _variableDefinition.getExpression())
    {
        compileExpression(*expression, _variableDefinition.getDeclaration().getType());
        CompilerUtils(m_context).moveToStackVariable(_variableDefinition.getDeclaration());
    }
    return false;
}

bool Compiler::visit(ExpressionStatement const& _expressionStatement)
{
    Expression const& expression = _expressionStatement.getExpression();
    compileExpression(expression);
    CompilerUtils(m_context).popStackElement(*expression.getType());
    return false;
}

bool Compiler::visit(PlaceholderStatement const&)
{
    ++m_modifierDepth;
    appendModifierOrFunctionCode();
    --m_modifierDepth;
    return true;
}

void Compiler::appendModifierOrFunctionCode()
{
    solAssert(m_currentFunction, "");
    if (m_modifierDepth >= m_currentFunction->getModifiers().size())
        m_currentFunction->getBody().accept(*this);
    else
    {
        ASTPointer<ModifierInvocation> const& modifierInvocation = m_currentFunction->getModifiers()[m_modifierDepth];

        ModifierDefinition const& modifier = m_context.getFunctionModifier(modifierInvocation->getName()->getName());
        solAssert(modifier.getParameters().size() == modifierInvocation->getArguments().size(), "");
        for (unsigned i = 0; i < modifier.getParameters().size(); ++i)
        {
            m_context.addVariable(*modifier.getParameters()[i]);
            compileExpression(*modifierInvocation->getArguments()[i],
                              modifier.getParameters()[i]->getType());
        }
        for (VariableDeclaration const* localVariable: modifier.getLocalVariables())
            m_context.addAndInitializeVariable(*localVariable);

        unsigned const c_stackSurplus = CompilerUtils::getSizeOnStack(modifier.getParameters()) +
                                        CompilerUtils::getSizeOnStack(modifier.getLocalVariables());
        m_stackCleanupForReturn += c_stackSurplus;

        modifier.getBody().accept(*this);

        for (unsigned i = 0; i < c_stackSurplus; ++i)
            m_context << eth::Instruction::POP;
        m_stackCleanupForReturn -= c_stackSurplus;
    }
}

void Compiler::compileExpression(Expression const& _expression, TypePointer const& _targetType)
{
    ExpressionCompiler::compileExpression(m_context, _expression, m_optimize);
    if (_targetType)
        ExpressionCompiler::appendTypeConversion(m_context, *_expression.getType(), *_targetType);
}

}
}