/* This file is part of solidity. solidity is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. solidity is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with solidity. If not, see . */ /** * @author Christian * @date 2014 * Tests for the Solidity optimizer. */ #include #include #include #include #include #include #include #include #include #include #include using namespace std; using namespace langutil; using namespace dev::eth; namespace dev { namespace solidity { namespace test { namespace { AssemblyItems addDummyLocations(AssemblyItems const& _input) { // add dummy locations to each item so that we can check that they are not deleted AssemblyItems input = _input; for (AssemblyItem& item: input) item.setLocation(SourceLocation(1, 3, make_shared(""))); return input; } eth::KnownState createInitialState(AssemblyItems const& _input) { eth::KnownState state; for (auto const& item: addDummyLocations(_input)) state.feedItem(item, true); return state; } AssemblyItems CSE(AssemblyItems const& _input, eth::KnownState const& _state = eth::KnownState()) { AssemblyItems input = addDummyLocations(_input); bool usesMsize = (find(_input.begin(), _input.end(), AssemblyItem{Instruction::MSIZE}) != _input.end()); eth::CommonSubexpressionEliminator cse(_state); BOOST_REQUIRE(cse.feedItems(input.begin(), input.end(), usesMsize) == input.end()); AssemblyItems output = cse.getOptimizedItems(); for (AssemblyItem const& item: output) { BOOST_CHECK(item == Instruction::POP || !item.location().isEmpty()); } return output; } void checkCSE( AssemblyItems const& _input, AssemblyItems const& _expectation, KnownState const& _state = eth::KnownState() ) { AssemblyItems output = CSE(_input, _state); BOOST_CHECK_EQUAL_COLLECTIONS(_expectation.begin(), _expectation.end(), output.begin(), output.end()); } AssemblyItems CFG(AssemblyItems const& _input) { AssemblyItems output = _input; // Running it four times should be enough for these tests. for (unsigned i = 0; i < 4; ++i) { ControlFlowGraph cfg(output); AssemblyItems optItems; for (BasicBlock const& block: cfg.optimisedBlocks()) copy(output.begin() + block.begin, output.begin() + block.end, back_inserter(optItems)); output = move(optItems); } return output; } void checkCFG(AssemblyItems const& _input, AssemblyItems const& _expectation) { AssemblyItems output = CFG(_input); BOOST_CHECK_EQUAL_COLLECTIONS(_expectation.begin(), _expectation.end(), output.begin(), output.end()); } } BOOST_AUTO_TEST_SUITE(Optimiser) BOOST_AUTO_TEST_CASE(cse_intermediate_swap) { eth::KnownState state; eth::CommonSubexpressionEliminator cse(state); AssemblyItems input{ Instruction::SWAP1, Instruction::POP, Instruction::ADD, u256(0), Instruction::SWAP1, Instruction::SLOAD, Instruction::SWAP1, u256(100), Instruction::EXP, Instruction::SWAP1, Instruction::DIV, u256(0xff), Instruction::AND }; BOOST_REQUIRE(cse.feedItems(input.begin(), input.end(), false) == input.end()); AssemblyItems output = cse.getOptimizedItems(); BOOST_CHECK(!output.empty()); } BOOST_AUTO_TEST_CASE(cse_negative_stack_access) { AssemblyItems input{Instruction::DUP2, u256(0)}; checkCSE(input, input); } BOOST_AUTO_TEST_CASE(cse_negative_stack_end) { AssemblyItems input{Instruction::ADD}; checkCSE(input, input); } BOOST_AUTO_TEST_CASE(cse_intermediate_negative_stack) { AssemblyItems input{Instruction::ADD, u256(1), Instruction::DUP1}; checkCSE(input, input); } BOOST_AUTO_TEST_CASE(cse_pop) { checkCSE({Instruction::POP}, {Instruction::POP}); } BOOST_AUTO_TEST_CASE(cse_unneeded_items) { AssemblyItems input{ Instruction::ADD, Instruction::SWAP1, Instruction::POP, u256(7), u256(8), }; checkCSE(input, input); } BOOST_AUTO_TEST_CASE(cse_constant_addition) { AssemblyItems input{u256(7), u256(8), Instruction::ADD}; checkCSE(input, {u256(7 + 8)}); } BOOST_AUTO_TEST_CASE(cse_invariants) { AssemblyItems input{ Instruction::DUP1, Instruction::DUP1, u256(0), Instruction::OR, Instruction::OR }; checkCSE(input, {Instruction::DUP1}); } BOOST_AUTO_TEST_CASE(cse_subself) { checkCSE({Instruction::DUP1, Instruction::SUB}, {Instruction::POP, u256(0)}); } BOOST_AUTO_TEST_CASE(cse_subother) { checkCSE({Instruction::SUB}, {Instruction::SUB}); } BOOST_AUTO_TEST_CASE(cse_double_negation) { checkCSE({Instruction::DUP5, Instruction::NOT, Instruction::NOT}, {Instruction::DUP5}); } BOOST_AUTO_TEST_CASE(cse_double_iszero) { checkCSE({Instruction::GT, Instruction::ISZERO, Instruction::ISZERO}, {Instruction::GT}); checkCSE({Instruction::GT, Instruction::ISZERO}, {Instruction::GT, Instruction::ISZERO}); checkCSE( {Instruction::ISZERO, Instruction::ISZERO, Instruction::ISZERO}, {Instruction::ISZERO} ); } BOOST_AUTO_TEST_CASE(cse_associativity) { AssemblyItems input{ Instruction::DUP1, Instruction::DUP1, u256(0), Instruction::OR, Instruction::OR }; checkCSE(input, {Instruction::DUP1}); } BOOST_AUTO_TEST_CASE(cse_associativity2) { AssemblyItems input{ u256(0), Instruction::DUP2, u256(2), u256(1), Instruction::DUP6, Instruction::ADD, u256(2), Instruction::ADD, Instruction::ADD, Instruction::ADD, Instruction::ADD }; checkCSE(input, {Instruction::DUP2, Instruction::DUP2, Instruction::ADD, u256(5), Instruction::ADD}); } BOOST_AUTO_TEST_CASE(cse_storage) { AssemblyItems input{ u256(0), Instruction::SLOAD, u256(0), Instruction::SLOAD, Instruction::ADD, u256(0), Instruction::SSTORE }; checkCSE(input, { u256(0), Instruction::DUP1, Instruction::SLOAD, Instruction::DUP1, Instruction::ADD, Instruction::SWAP1, Instruction::SSTORE }); } BOOST_AUTO_TEST_CASE(cse_noninterleaved_storage) { // two stores to the same location should be replaced by only one store, even if we // read in the meantime AssemblyItems input{ u256(7), Instruction::DUP2, Instruction::SSTORE, Instruction::DUP1, Instruction::SLOAD, u256(8), Instruction::DUP3, Instruction::SSTORE }; checkCSE(input, { u256(8), Instruction::DUP2, Instruction::SSTORE, u256(7) }); } BOOST_AUTO_TEST_CASE(cse_interleaved_storage) { // stores and reads to/from two unknown locations, should not optimize away the first store AssemblyItems input{ u256(7), Instruction::DUP2, Instruction::SSTORE, // store to "DUP1" Instruction::DUP2, Instruction::SLOAD, // read from "DUP2", might be equal to "DUP1" u256(0), Instruction::DUP3, Instruction::SSTORE // store different value to "DUP1" }; checkCSE(input, input); } BOOST_AUTO_TEST_CASE(cse_interleaved_storage_same_value) { // stores and reads to/from two unknown locations, should not optimize away the first store // but it should optimize away the second, since we already know the value will be the same AssemblyItems input{ u256(7), Instruction::DUP2, Instruction::SSTORE, // store to "DUP1" Instruction::DUP2, Instruction::SLOAD, // read from "DUP2", might be equal to "DUP1" u256(6), u256(1), Instruction::ADD, Instruction::DUP3, Instruction::SSTORE // store same value to "DUP1" }; checkCSE(input, { u256(7), Instruction::DUP2, Instruction::SSTORE, Instruction::DUP2, Instruction::SLOAD }); } BOOST_AUTO_TEST_CASE(cse_interleaved_storage_at_known_location) { // stores and reads to/from two known locations, should optimize away the first store, // because we know that the location is different AssemblyItems input{ u256(0x70), u256(1), Instruction::SSTORE, // store to 1 u256(2), Instruction::SLOAD, // read from 2, is different from 1 u256(0x90), u256(1), Instruction::SSTORE // store different value at 1 }; checkCSE(input, { u256(2), Instruction::SLOAD, u256(0x90), u256(1), Instruction::SSTORE }); } BOOST_AUTO_TEST_CASE(cse_interleaved_storage_at_known_location_offset) { // stores and reads to/from two locations which are known to be different, // should optimize away the first store, because we know that the location is different AssemblyItems input{ u256(0x70), Instruction::DUP2, u256(1), Instruction::ADD, Instruction::SSTORE, // store to "DUP1"+1 Instruction::DUP1, u256(2), Instruction::ADD, Instruction::SLOAD, // read from "DUP1"+2, is different from "DUP1"+1 u256(0x90), Instruction::DUP3, u256(1), Instruction::ADD, Instruction::SSTORE // store different value at "DUP1"+1 }; checkCSE(input, { u256(2), Instruction::DUP2, Instruction::ADD, Instruction::SLOAD, u256(0x90), u256(1), Instruction::DUP4, Instruction::ADD, Instruction::SSTORE }); } BOOST_AUTO_TEST_CASE(cse_deep_stack) { AssemblyItems input{ Instruction::ADD, Instruction::SWAP1, Instruction::POP, Instruction::SWAP8, Instruction::POP, Instruction::SWAP8, Instruction::POP, Instruction::SWAP8, Instruction::SWAP5, Instruction::POP, Instruction::POP, Instruction::POP, Instruction::POP, Instruction::POP, }; checkCSE(input, { Instruction::SWAP4, Instruction::SWAP12, Instruction::SWAP3, Instruction::SWAP11, Instruction::POP, Instruction::SWAP1, Instruction::SWAP3, Instruction::ADD, Instruction::SWAP8, Instruction::POP, Instruction::SWAP6, Instruction::POP, Instruction::POP, Instruction::POP, Instruction::POP, Instruction::POP, Instruction::POP, }); } BOOST_AUTO_TEST_CASE(cse_jumpi_no_jump) { AssemblyItems input{ u256(0), u256(1), Instruction::DUP2, AssemblyItem(PushTag, 1), Instruction::JUMPI }; checkCSE(input, { u256(0), u256(1) }); } BOOST_AUTO_TEST_CASE(cse_jumpi_jump) { AssemblyItems input{ u256(1), u256(1), Instruction::DUP2, AssemblyItem(PushTag, 1), Instruction::JUMPI }; checkCSE(input, { u256(1), Instruction::DUP1, AssemblyItem(PushTag, 1), Instruction::JUMP }); } BOOST_AUTO_TEST_CASE(cse_empty_keccak256) { AssemblyItems input{ u256(0), Instruction::DUP2, Instruction::KECCAK256 }; checkCSE(input, { u256(dev::keccak256(bytesConstRef())) }); } BOOST_AUTO_TEST_CASE(cse_partial_keccak256) { AssemblyItems input{ u256(0xabcd) << (256 - 16), u256(0), Instruction::MSTORE, u256(2), u256(0), Instruction::KECCAK256 }; checkCSE(input, { u256(0xabcd) << (256 - 16), u256(0), Instruction::MSTORE, u256(dev::keccak256(bytes{0xab, 0xcd})) }); } BOOST_AUTO_TEST_CASE(cse_keccak256_twice_same_location) { // Keccak-256 twice from same dynamic location AssemblyItems input{ Instruction::DUP2, Instruction::DUP1, Instruction::MSTORE, u256(64), Instruction::DUP2, Instruction::KECCAK256, u256(64), Instruction::DUP3, Instruction::KECCAK256 }; checkCSE(input, { Instruction::DUP2, Instruction::DUP1, Instruction::MSTORE, u256(64), Instruction::DUP2, Instruction::KECCAK256, Instruction::DUP1 }); } BOOST_AUTO_TEST_CASE(cse_keccak256_twice_same_content) { // Keccak-256 twice from different dynamic location but with same content AssemblyItems input{ Instruction::DUP1, u256(0x80), Instruction::MSTORE, // m[128] = DUP1 u256(0x20), u256(0x80), Instruction::KECCAK256, // keccak256(m[128..(128+32)]) Instruction::DUP2, u256(12), Instruction::MSTORE, // m[12] = DUP1 u256(0x20), u256(12), Instruction::KECCAK256 // keccak256(m[12..(12+32)]) }; checkCSE(input, { u256(0x80), Instruction::DUP2, Instruction::DUP2, Instruction::MSTORE, u256(0x20), Instruction::SWAP1, Instruction::KECCAK256, u256(12), Instruction::DUP3, Instruction::SWAP1, Instruction::MSTORE, Instruction::DUP1 }); } BOOST_AUTO_TEST_CASE(cse_keccak256_twice_same_content_dynamic_store_in_between) { // Keccak-256 twice from different dynamic location but with same content, // dynamic mstore in between, which forces us to re-calculate the hash AssemblyItems input{ u256(0x80), Instruction::DUP2, Instruction::DUP2, Instruction::MSTORE, // m[128] = DUP1 u256(0x20), Instruction::DUP1, Instruction::DUP3, Instruction::KECCAK256, // keccak256(m[128..(128+32)]) u256(12), Instruction::DUP5, Instruction::DUP2, Instruction::MSTORE, // m[12] = DUP1 Instruction::DUP12, Instruction::DUP14, Instruction::MSTORE, // destroys memory knowledge Instruction::SWAP2, Instruction::SWAP1, Instruction::SWAP2, Instruction::KECCAK256 // keccak256(m[12..(12+32)]) }; checkCSE(input, input); } BOOST_AUTO_TEST_CASE(cse_keccak256_twice_same_content_noninterfering_store_in_between) { // Keccak-256 twice from different dynamic location but with same content, // dynamic mstore in between, but does not force us to re-calculate the hash AssemblyItems input{ u256(0x80), Instruction::DUP2, Instruction::DUP2, Instruction::MSTORE, // m[128] = DUP1 u256(0x20), Instruction::DUP1, Instruction::DUP3, Instruction::KECCAK256, // keccak256(m[128..(128+32)]) u256(12), Instruction::DUP5, Instruction::DUP2, Instruction::MSTORE, // m[12] = DUP1 Instruction::DUP12, u256(12 + 32), Instruction::MSTORE, // does not destoy memory knowledge Instruction::DUP13, u256(128 - 32), Instruction::MSTORE, // does not destoy memory knowledge u256(0x20), u256(12), Instruction::KECCAK256 // keccak256(m[12..(12+32)]) }; // if this changes too often, only count the number of SHA3 and MSTORE instructions AssemblyItems output = CSE(input); BOOST_CHECK_EQUAL(4, count(output.begin(), output.end(), AssemblyItem(Instruction::MSTORE))); BOOST_CHECK_EQUAL(1, count(output.begin(), output.end(), AssemblyItem(Instruction::KECCAK256))); } BOOST_AUTO_TEST_CASE(cse_with_initially_known_stack) { eth::KnownState state = createInitialState(AssemblyItems{ u256(0x12), u256(0x20), Instruction::ADD }); AssemblyItems input{ u256(0x12 + 0x20) }; checkCSE(input, AssemblyItems{Instruction::DUP1}, state); } BOOST_AUTO_TEST_CASE(cse_equality_on_initially_known_stack) { eth::KnownState state = createInitialState(AssemblyItems{Instruction::DUP1}); AssemblyItems input{ Instruction::EQ }; AssemblyItems output = CSE(input, state); // check that it directly pushes 1 (true) BOOST_CHECK(find(output.begin(), output.end(), AssemblyItem(u256(1))) != output.end()); } BOOST_AUTO_TEST_CASE(cse_access_previous_sequence) { // Tests that the code generator detects whether it tries to access SLOAD instructions // from a sequenced expression which is not in its scope. eth::KnownState state = createInitialState(AssemblyItems{ u256(0), Instruction::SLOAD, u256(1), Instruction::ADD, u256(0), Instruction::SSTORE }); // now stored: val_1 + 1 (value at sequence 1) // if in the following instructions, the SLOAD cresolves to "val_1 + 1", // this cannot be generated because we cannot load from sequence 1 anymore. AssemblyItems input{ u256(0), Instruction::SLOAD, }; BOOST_CHECK_THROW(CSE(input, state), StackTooDeepException); // @todo for now, this throws an exception, but it should recover to the following // (or an even better version) at some point: // 0, SLOAD, 1, ADD, SSTORE, 0 SLOAD } BOOST_AUTO_TEST_CASE(cse_optimise_return) { checkCSE( AssemblyItems{u256(0), u256(7), Instruction::RETURN}, AssemblyItems{Instruction::STOP} ); } BOOST_AUTO_TEST_CASE(control_flow_graph_remove_unused) { // remove parts of the code that are unused AssemblyItems input{ AssemblyItem(PushTag, 1), Instruction::JUMP, u256(7), AssemblyItem(Tag, 1), }; checkCFG(input, {}); } BOOST_AUTO_TEST_CASE(control_flow_graph_remove_unused_loop) { AssemblyItems input{ AssemblyItem(PushTag, 3), Instruction::JUMP, AssemblyItem(Tag, 1), u256(7), AssemblyItem(PushTag, 2), Instruction::JUMP, AssemblyItem(Tag, 2), u256(8), AssemblyItem(PushTag, 1), Instruction::JUMP, AssemblyItem(Tag, 3), u256(11) }; checkCFG(input, {u256(11)}); } BOOST_AUTO_TEST_CASE(control_flow_graph_reconnect_single_jump_source) { // move code that has only one unconditional jump source AssemblyItems input{ u256(1), AssemblyItem(PushTag, 1), Instruction::JUMP, AssemblyItem(Tag, 2), u256(2), AssemblyItem(PushTag, 3), Instruction::JUMP, AssemblyItem(Tag, 1), u256(3), AssemblyItem(PushTag, 2), Instruction::JUMP, AssemblyItem(Tag, 3), u256(4), }; checkCFG(input, {u256(1), u256(3), u256(2), u256(4)}); } BOOST_AUTO_TEST_CASE(control_flow_graph_do_not_remove_returned_to) { // do not remove parts that are "returned to" AssemblyItems input{ AssemblyItem(PushTag, 1), AssemblyItem(PushTag, 2), Instruction::JUMP, AssemblyItem(Tag, 2), Instruction::JUMP, AssemblyItem(Tag, 1), u256(2) }; checkCFG(input, {u256(2)}); } BOOST_AUTO_TEST_CASE(block_deduplicator) { AssemblyItems input{ AssemblyItem(PushTag, 2), AssemblyItem(PushTag, 1), AssemblyItem(PushTag, 3), u256(6), Instruction::SWAP3, Instruction::JUMP, AssemblyItem(Tag, 1), u256(6), Instruction::SWAP3, Instruction::JUMP, AssemblyItem(Tag, 2), u256(6), Instruction::SWAP3, Instruction::JUMP, AssemblyItem(Tag, 3) }; BlockDeduplicator dedup(input); dedup.deduplicate(); set pushTags; for (AssemblyItem const& item: input) if (item.type() == PushTag) pushTags.insert(item.data()); BOOST_CHECK_EQUAL(pushTags.size(), 2); } BOOST_AUTO_TEST_CASE(block_deduplicator_loops) { AssemblyItems input{ u256(0), Instruction::SLOAD, AssemblyItem(PushTag, 1), AssemblyItem(PushTag, 2), Instruction::JUMPI, Instruction::JUMP, AssemblyItem(Tag, 1), u256(5), u256(6), Instruction::SSTORE, AssemblyItem(PushTag, 1), Instruction::JUMP, AssemblyItem(Tag, 2), u256(5), u256(6), Instruction::SSTORE, AssemblyItem(PushTag, 2), Instruction::JUMP, }; BlockDeduplicator dedup(input); dedup.deduplicate(); set pushTags; for (AssemblyItem const& item: input) if (item.type() == PushTag) pushTags.insert(item.data()); BOOST_CHECK_EQUAL(pushTags.size(), 1); } BOOST_AUTO_TEST_CASE(clear_unreachable_code) { AssemblyItems items{ AssemblyItem(PushTag, 1), Instruction::JUMP, u256(0), Instruction::SLOAD, AssemblyItem(Tag, 2), u256(5), u256(6), Instruction::SSTORE, AssemblyItem(PushTag, 1), Instruction::JUMP, u256(5), u256(6) }; AssemblyItems expectation{ AssemblyItem(PushTag, 1), Instruction::JUMP, AssemblyItem(Tag, 2), u256(5), u256(6), Instruction::SSTORE, AssemblyItem(PushTag, 1), Instruction::JUMP }; PeepholeOptimiser peepOpt(items); BOOST_REQUIRE(peepOpt.optimise()); BOOST_CHECK_EQUAL_COLLECTIONS( items.begin(), items.end(), expectation.begin(), expectation.end() ); } BOOST_AUTO_TEST_CASE(peephole_double_push) { AssemblyItems items{ u256(0), u256(0), u256(5), u256(5), u256(4), u256(5) }; AssemblyItems expectation{ u256(0), Instruction::DUP1, u256(5), Instruction::DUP1, u256(4), u256(5) }; PeepholeOptimiser peepOpt(items); BOOST_REQUIRE(peepOpt.optimise()); BOOST_CHECK_EQUAL_COLLECTIONS( items.begin(), items.end(), expectation.begin(), expectation.end() ); } BOOST_AUTO_TEST_CASE(peephole_pop_calldatasize) { AssemblyItems items{ u256(4), Instruction::CALLDATASIZE, Instruction::LT, Instruction::POP }; PeepholeOptimiser peepOpt(items); for (size_t i = 0; i < 3; i++) BOOST_CHECK(peepOpt.optimise()); BOOST_CHECK(items.empty()); } BOOST_AUTO_TEST_CASE(peephole_commutative_swap1) { vector ops{ Instruction::ADD, Instruction::MUL, Instruction::EQ, Instruction::AND, Instruction::OR, Instruction::XOR }; for (Instruction const op: ops) { AssemblyItems items{ u256(1), u256(2), Instruction::SWAP1, op, u256(4), u256(5) }; AssemblyItems expectation{ u256(1), u256(2), op, u256(4), u256(5) }; PeepholeOptimiser peepOpt(items); BOOST_REQUIRE(peepOpt.optimise()); BOOST_CHECK_EQUAL_COLLECTIONS( items.begin(), items.end(), expectation.begin(), expectation.end() ); } } BOOST_AUTO_TEST_CASE(peephole_noncommutative_swap1) { // NOTE: not comprehensive vector ops{ Instruction::SUB, Instruction::DIV, Instruction::SDIV, Instruction::MOD, Instruction::SMOD, Instruction::EXP }; for (Instruction const op: ops) { AssemblyItems items{ u256(1), u256(2), Instruction::SWAP1, op, u256(4), u256(5) }; AssemblyItems expectation{ u256(1), u256(2), Instruction::SWAP1, op, u256(4), u256(5) }; PeepholeOptimiser peepOpt(items); BOOST_REQUIRE(!peepOpt.optimise()); BOOST_CHECK_EQUAL_COLLECTIONS( items.begin(), items.end(), expectation.begin(), expectation.end() ); } } BOOST_AUTO_TEST_CASE(peephole_swap_comparison) { map swappableOps{ { Instruction::LT, Instruction::GT }, { Instruction::GT, Instruction::LT }, { Instruction::SLT, Instruction::SGT }, { Instruction::SGT, Instruction::SLT } }; for (auto const& op: swappableOps) { AssemblyItems items{ u256(1), u256(2), Instruction::SWAP1, op.first, u256(4), u256(5) }; AssemblyItems expectation{ u256(1), u256(2), op.second, u256(4), u256(5) }; PeepholeOptimiser peepOpt(items); BOOST_REQUIRE(peepOpt.optimise()); BOOST_CHECK_EQUAL_COLLECTIONS( items.begin(), items.end(), expectation.begin(), expectation.end() ); } } BOOST_AUTO_TEST_CASE(peephole_truthy_and) { AssemblyItems items{ AssemblyItem(Tag, 1), Instruction::BALANCE, u256(0), Instruction::NOT, Instruction::AND, AssemblyItem(PushTag, 1), Instruction::JUMPI }; AssemblyItems expectation{ AssemblyItem(Tag, 1), Instruction::BALANCE, AssemblyItem(PushTag, 1), Instruction::JUMPI }; PeepholeOptimiser peepOpt(items); BOOST_REQUIRE(peepOpt.optimise()); BOOST_CHECK_EQUAL_COLLECTIONS( items.begin(), items.end(), expectation.begin(), expectation.end() ); } BOOST_AUTO_TEST_CASE(jumpdest_removal) { AssemblyItems items{ AssemblyItem(Tag, 2), AssemblyItem(PushTag, 1), u256(5), AssemblyItem(Tag, 10), AssemblyItem(Tag, 3), u256(6), AssemblyItem(Tag, 1), Instruction::JUMP, }; AssemblyItems expectation{ AssemblyItem(PushTag, 1), u256(5), u256(6), AssemblyItem(Tag, 1), Instruction::JUMP }; JumpdestRemover jdr(items); BOOST_REQUIRE(jdr.optimise({})); BOOST_CHECK_EQUAL_COLLECTIONS( items.begin(), items.end(), expectation.begin(), expectation.end() ); } BOOST_AUTO_TEST_CASE(jumpdest_removal_subassemblies) { // This tests that tags from subassemblies are not removed // if they are referenced by a super-assembly. Furthermore, // tag unifications (due to block deduplication) is also // visible at the super-assembly. Assembly main; AssemblyPointer sub = make_shared(); sub->append(u256(1)); auto t1 = sub->newTag(); sub->append(t1); sub->append(u256(2)); sub->append(Instruction::JUMP); auto t2 = sub->newTag(); sub->append(t2); // Identical to T1, will be unified sub->append(u256(2)); sub->append(Instruction::JUMP); auto t3 = sub->newTag(); sub->append(t3); auto t4 = sub->newTag(); sub->append(t4); auto t5 = sub->newTag(); sub->append(t5); // This will be removed sub->append(u256(7)); sub->append(t4.pushTag()); sub->append(Instruction::JUMP); size_t subId = size_t(main.appendSubroutine(sub).data()); main.append(t1.toSubAssemblyTag(subId)); main.append(t1.toSubAssemblyTag(subId)); main.append(u256(8)); main.optimise(true, dev::test::Options::get().evmVersion()); AssemblyItems expectationMain{ AssemblyItem(PushSubSize, 0), t1.toSubAssemblyTag(subId).pushTag(), t1.toSubAssemblyTag(subId).pushTag(), u256(8) }; BOOST_CHECK_EQUAL_COLLECTIONS( main.items().begin(), main.items().end(), expectationMain.begin(), expectationMain.end() ); AssemblyItems expectationSub{ u256(1), t1.tag(), u256(2), Instruction::JUMP, t4.tag(), u256(7), t4.pushTag(), Instruction::JUMP }; BOOST_CHECK_EQUAL_COLLECTIONS( sub->items().begin(), sub->items().end(), expectationSub.begin(), expectationSub.end() ); } BOOST_AUTO_TEST_CASE(cse_sub_zero) { checkCSE({ u256(0), Instruction::DUP2, Instruction::SUB }, { Instruction::DUP1 }); checkCSE({ Instruction::DUP1, u256(0), Instruction::SUB }, { u256(0), Instruction::DUP2, Instruction::SWAP1, Instruction::SUB }); } BOOST_AUTO_TEST_CASE(cse_remove_unwanted_masking_of_address) { vector ops{ Instruction::ADDRESS, Instruction::CALLER, Instruction::ORIGIN, Instruction::COINBASE }; for (auto const& op: ops) { checkCSE({ u256("0xffffffffffffffffffffffffffffffffffffffff"), op, Instruction::AND }, { op }); checkCSE({ op, u256("0xffffffffffffffffffffffffffffffffffffffff"), Instruction::AND }, { op }); // do not remove mask for other masking checkCSE({ u256(1234), op, Instruction::AND }, { op, u256(1234), Instruction::AND }); checkCSE({ op, u256(1234), Instruction::AND }, { u256(1234), op, Instruction::AND }); } // leave other opcodes untouched checkCSE({ u256("0xffffffffffffffffffffffffffffffffffffffff"), Instruction::CALLVALUE, Instruction::AND }, { Instruction::CALLVALUE, u256("0xffffffffffffffffffffffffffffffffffffffff"), Instruction::AND }); checkCSE({ Instruction::CALLVALUE, u256("0xffffffffffffffffffffffffffffffffffffffff"), Instruction::AND }, { u256("0xffffffffffffffffffffffffffffffffffffffff"), Instruction::CALLVALUE, Instruction::AND }); } BOOST_AUTO_TEST_SUITE_END() } } } // end namespaces