/*
This file is part of cpp-ethereum.
cpp-ethereum is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
cpp-ethereum is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with cpp-ethereum. If not, see .
*/
/**
* @author Christian
* @date 2014
* Unit tests for the solidity expression compiler, testing the behaviour of the code.
*/
#include
#include
#include
#include
#include
#include
using namespace std;
namespace dev
{
/// Provider another overload for toBigEndian to encode arguments and return values.
inline bytes toBigEndian(bool _value) { return bytes({byte(_value)}); }
namespace solidity
{
namespace test
{
class ExecutionFramework
{
public:
ExecutionFramework() { g_logVerbosity = 0; }
bytes const& compileAndRun(string const& _sourceCode, u256 const& _value = 0)
{
bytes code = dev::solidity::CompilerStack::staticCompile(_sourceCode);
sendMessage(code, true, _value);
BOOST_REQUIRE(!m_output.empty());
return m_output;
}
bytes const& callContractFunction(byte _index, bytes const& _data = bytes(), u256 const& _value = 0)
{
sendMessage(bytes(1, _index) + _data, false, _value);
return m_output;
}
template
bytes const& callContractFunction(byte _index, Args const&... _arguments)
{
return callContractFunction(_index, argsToBigEndian(_arguments...));
}
template
void testSolidityAgainstCpp(byte _index, CppFunction const& _cppFunction, Args const&... _arguments)
{
bytes solidityResult = callContractFunction(_index, _arguments...);
bytes cppResult = callCppAndEncodeResult(_cppFunction, _arguments...);
BOOST_CHECK_MESSAGE(solidityResult == cppResult, "Computed values do not match."
"\nSolidity: " + toHex(solidityResult) + "\nC++: " + toHex(cppResult));
}
template
void testSolidityAgainstCppOnRange(byte _index, CppFunction const& _cppFunction,
u256 const& _rangeStart, u256 const& _rangeEnd)
{
for (u256 argument = _rangeStart; argument < _rangeEnd; ++argument)
{
bytes solidityResult = callContractFunction(_index, argument);
bytes cppResult = callCppAndEncodeResult(_cppFunction, argument);
BOOST_CHECK_MESSAGE(solidityResult == cppResult, "Computed values do not match."
"\nSolidity: " + toHex(solidityResult) + "\nC++: " + toHex(cppResult) +
"\nArgument: " + toHex(toBigEndian(argument)));
}
}
private:
template
bytes argsToBigEndian(FirstArg const& _firstArg, Args const&... _followingArgs) const
{
return toBigEndian(_firstArg) + argsToBigEndian(_followingArgs...);
}
bytes argsToBigEndian() const { return bytes(); }
template
auto callCppAndEncodeResult(CppFunction const& _cppFunction, Args const&... _arguments)
-> typename enable_if::value, bytes>::type
{
_cppFunction(_arguments...);
return bytes();
}
template
auto callCppAndEncodeResult(CppFunction const& _cppFunction, Args const&... _arguments)
-> typename enable_if::value, bytes>::type
{
return toBigEndian(_cppFunction(_arguments...));
}
void sendMessage(bytes const& _data, bool _isCreation, u256 const& _value = 0)
{
eth::Executive executive(m_state);
eth::Transaction t = _isCreation ? eth::Transaction(_value, m_gasPrice, m_gas, _data, 0, KeyPair::create().sec())
: eth::Transaction(_value, m_gasPrice, m_gas, m_contractAddress, _data, 0, KeyPair::create().sec());
bytes transactionRLP = t.rlp();
try
{
// this will throw since the transaction is invalid, but it should nevertheless store the transaction
executive.setup(&transactionRLP);
}
catch (...) {}
if (_isCreation)
{
BOOST_REQUIRE(!executive.create(Address(), _value, m_gasPrice, m_gas, &_data, Address()));
m_contractAddress = executive.newAddress();
BOOST_REQUIRE(m_contractAddress);
BOOST_REQUIRE(m_state.addressHasCode(m_contractAddress));
}
else
{
BOOST_REQUIRE(m_state.addressHasCode(m_contractAddress));
BOOST_REQUIRE(!executive.call(m_contractAddress, Address(), _value, m_gasPrice, &_data, m_gas, Address()));
}
BOOST_REQUIRE(executive.go());
executive.finalize();
m_output = executive.out().toVector();
}
protected:
Address m_contractAddress;
eth::State m_state;
u256 const m_gasPrice = 100 * eth::szabo;
u256 const m_gas = 1000000;
bytes m_output;
};
BOOST_FIXTURE_TEST_SUITE(SolidityCompilerEndToEndTest, ExecutionFramework)
BOOST_AUTO_TEST_CASE(smoke_test)
{
char const* sourceCode = "contract test {\n"
" function f(uint a) returns(uint d) { return a * 7; }\n"
"}\n";
compileAndRun(sourceCode);
testSolidityAgainstCppOnRange(0, [](u256 const& a) -> u256 { return a * 7; }, 0, 100);
}
BOOST_AUTO_TEST_CASE(empty_contract)
{
char const* sourceCode = "contract test {\n"
"}\n";
compileAndRun(sourceCode);
BOOST_CHECK(callContractFunction(0, bytes()).empty());
}
BOOST_AUTO_TEST_CASE(recursive_calls)
{
char const* sourceCode = "contract test {\n"
" function f(uint n) returns(uint nfac) {\n"
" if (n <= 1) return 1;\n"
" else return n * f(n - 1);\n"
" }\n"
"}\n";
compileAndRun(sourceCode);
function recursive_calls_cpp = [&recursive_calls_cpp](u256 const& n) -> u256
{
if (n <= 1)
return 1;
else
return n * recursive_calls_cpp(n - 1);
};
testSolidityAgainstCppOnRange(0, recursive_calls_cpp, 0, 5);
}
BOOST_AUTO_TEST_CASE(multiple_functions)
{
char const* sourceCode = "contract test {\n"
" function a() returns(uint n) { return 0; }\n"
" function b() returns(uint n) { return 1; }\n"
" function c() returns(uint n) { return 2; }\n"
" function f() returns(uint n) { return 3; }\n"
"}\n";
compileAndRun(sourceCode);
BOOST_CHECK(callContractFunction(0, bytes()) == toBigEndian(u256(0)));
BOOST_CHECK(callContractFunction(1, bytes()) == toBigEndian(u256(1)));
BOOST_CHECK(callContractFunction(2, bytes()) == toBigEndian(u256(2)));
BOOST_CHECK(callContractFunction(3, bytes()) == toBigEndian(u256(3)));
BOOST_CHECK(callContractFunction(4, bytes()) == bytes());
}
BOOST_AUTO_TEST_CASE(while_loop)
{
char const* sourceCode = "contract test {\n"
" function f(uint n) returns(uint nfac) {\n"
" nfac = 1;\n"
" var i = 2;\n"
" while (i <= n) nfac *= i++;\n"
" }\n"
"}\n";
compileAndRun(sourceCode);
auto while_loop_cpp = [](u256 const& n) -> u256
{
u256 nfac = 1;
u256 i = 2;
while (i <= n)
nfac *= i++;
return nfac;
};
testSolidityAgainstCppOnRange(0, while_loop_cpp, 0, 5);
}
BOOST_AUTO_TEST_CASE(break_outside_loop)
{
// break and continue outside loops should be simply ignored
char const* sourceCode = "contract test {\n"
" function f(uint x) returns(uint y) {\n"
" break; continue; return 2;\n"
" }\n"
"}\n";
compileAndRun(sourceCode);
testSolidityAgainstCpp(0, [](u256 const&) -> u256 { return 2; }, u256(0));
}
BOOST_AUTO_TEST_CASE(nested_loops)
{
// tests that break and continue statements in nested loops jump to the correct place
char const* sourceCode = "contract test {\n"
" function f(uint x) returns(uint y) {\n"
" while (x > 1) {\n"
" if (x == 10) break;\n"
" while (x > 5) {\n"
" if (x == 8) break;\n"
" x--;\n"
" if (x == 6) continue;\n"
" return x;\n"
" }\n"
" x--;\n"
" if (x == 3) continue;\n"
" break;\n"
" }\n"
" return x;\n"
" }\n"
"}\n";
compileAndRun(sourceCode);
auto nested_loops_cpp = [](u256 n) -> u256
{
while (n > 1)
{
if (n == 10)
break;
while (n > 5)
{
if (n == 8)
break;
n--;
if (n == 6)
continue;
return n;
}
n--;
if (n == 3)
continue;
break;
}
return n;
};
testSolidityAgainstCppOnRange(0, nested_loops_cpp, 0, 12);
}
BOOST_AUTO_TEST_CASE(calling_other_functions)
{
// note that the index of a function is its index in the sorted sequence of functions
char const* sourceCode = "contract collatz {\n"
" function run(uint x) returns(uint y) {\n"
" while ((y = x) > 1) {\n"
" if (x % 2 == 0) x = evenStep(x);\n"
" else x = oddStep(x);\n"
" }\n"
" }\n"
" function evenStep(uint x) returns(uint y) {\n"
" return x / 2;\n"
" }\n"
" function oddStep(uint x) returns(uint y) {\n"
" return 3 * x + 1;\n"
" }\n"
"}\n";
compileAndRun(sourceCode);
auto evenStep_cpp = [](u256 const& n) -> u256
{
return n / 2;
};
auto oddStep_cpp = [](u256 const& n) -> u256
{
return 3 * n + 1;
};
auto collatz_cpp = [&evenStep_cpp, &oddStep_cpp](u256 n) -> u256
{
u256 y;
while ((y = n) > 1)
{
if (n % 2 == 0)
n = evenStep_cpp(n);
else
n = oddStep_cpp(n);
}
return y;
};
testSolidityAgainstCpp(2, collatz_cpp, u256(0));
testSolidityAgainstCpp(2, collatz_cpp, u256(1));
testSolidityAgainstCpp(2, collatz_cpp, u256(2));
testSolidityAgainstCpp(2, collatz_cpp, u256(8));
testSolidityAgainstCpp(2, collatz_cpp, u256(127));
}
BOOST_AUTO_TEST_CASE(many_local_variables)
{
char const* sourceCode = "contract test {\n"
" function run(uint x1, uint x2, uint x3) returns(uint y) {\n"
" var a = 0x1; var b = 0x10; var c = 0x100;\n"
" y = a + b + c + x1 + x2 + x3;\n"
" y += b + x2;\n"
" }\n"
"}\n";
compileAndRun(sourceCode);
auto f = [](u256 const& x1, u256 const& x2, u256 const& x3) -> u256
{
u256 a = 0x1;
u256 b = 0x10;
u256 c = 0x100;
u256 y = a + b + c + x1 + x2 + x3;
return y + b + x2;
};
testSolidityAgainstCpp(0, f, u256(0x1000), u256(0x10000), u256(0x100000));
}
BOOST_AUTO_TEST_CASE(packing_unpacking_types)
{
char const* sourceCode = "contract test {\n"
" function run(bool a, uint32 b, uint64 c) returns(uint256 y) {\n"
" if (a) y = 1;\n"
" y = y * 0x100000000 | ~b;\n"
" y = y * 0x10000000000000000 | ~c;\n"
" }\n"
"}\n";
compileAndRun(sourceCode);
BOOST_CHECK(callContractFunction(0, fromHex("01""0f0f0f0f""f0f0f0f0f0f0f0f0"))
== fromHex("00000000000000000000000000000000000000""01""f0f0f0f0""0f0f0f0f0f0f0f0f"));
}
BOOST_AUTO_TEST_CASE(multiple_return_values)
{
char const* sourceCode = "contract test {\n"
" function run(bool x1, uint x2) returns(uint y1, bool y2, uint y3) {\n"
" y1 = x2; y2 = x1;\n"
" }\n"
"}\n";
compileAndRun(sourceCode);
BOOST_CHECK(callContractFunction(0, bytes(1, 1) + toBigEndian(u256(0xcd)))
== toBigEndian(u256(0xcd)) + bytes(1, 1) + toBigEndian(u256(0)));
}
BOOST_AUTO_TEST_CASE(short_circuiting)
{
char const* sourceCode = "contract test {\n"
" function run(uint x) returns(uint y) {\n"
" x == 0 || ((x = 8) > 0);\n"
" return x;"
" }\n"
"}\n";
compileAndRun(sourceCode);
auto short_circuiting_cpp = [](u256 n) -> u256
{
n == 0 || (n = 8) > 0;
return n;
};
testSolidityAgainstCppOnRange(0, short_circuiting_cpp, 0, 2);
}
BOOST_AUTO_TEST_CASE(high_bits_cleaning)
{
char const* sourceCode = "contract test {\n"
" function run() returns(uint256 y) {\n"
" uint32 x = uint32(0xffffffff) + 10;\n"
" if (x >= 0xffffffff) return 0;\n"
" return x;"
" }\n"
"}\n";
compileAndRun(sourceCode);
auto high_bits_cleaning_cpp = []() -> u256
{
uint32_t x = uint32_t(0xffffffff) + 10;
if (x >= 0xffffffff)
return 0;
return x;
};
testSolidityAgainstCpp(0, high_bits_cleaning_cpp);
}
BOOST_AUTO_TEST_CASE(sign_extension)
{
char const* sourceCode = "contract test {\n"
" function run() returns(uint256 y) {\n"
" int64 x = -int32(0xff);\n"
" if (x >= 0xff) return 0;\n"
" return -uint256(x);"
" }\n"
"}\n";
compileAndRun(sourceCode);
auto sign_extension_cpp = []() -> u256
{
int64_t x = -int32_t(0xff);
if (x >= 0xff)
return 0;
return u256(x) * -1;
};
testSolidityAgainstCpp(0, sign_extension_cpp);
}
BOOST_AUTO_TEST_CASE(small_unsigned_types)
{
char const* sourceCode = "contract test {\n"
" function run() returns(uint256 y) {\n"
" uint32 x = uint32(0xffffff) * 0xffffff;\n"
" return x / 0x100;"
" }\n"
"}\n";
compileAndRun(sourceCode);
auto small_unsigned_types_cpp = []() -> u256
{
uint32_t x = uint32_t(0xffffff) * 0xffffff;
return x / 0x100;
};
testSolidityAgainstCpp(0, small_unsigned_types_cpp);
}
BOOST_AUTO_TEST_CASE(small_signed_types)
{
char const* sourceCode = "contract test {\n"
" function run() returns(int256 y) {\n"
" return -int32(10) * -int64(20);\n"
" }\n"
"}\n";
compileAndRun(sourceCode);
auto small_signed_types_cpp = []() -> u256
{
return -int32_t(10) * -int64_t(20);
};
testSolidityAgainstCpp(0, small_signed_types_cpp);
}
BOOST_AUTO_TEST_CASE(state_smoke_test)
{
char const* sourceCode = "contract test {\n"
" uint256 value1;\n"
" uint256 value2;\n"
" function get(uint8 which) returns (uint256 value) {\n"
" if (which == 0) return value1;\n"
" else return value2;\n"
" }\n"
" function set(uint8 which, uint256 value) {\n"
" if (which == 0) value1 = value;\n"
" else value2 = value;\n"
" }\n"
"}\n";
compileAndRun(sourceCode);
BOOST_CHECK(callContractFunction(0, bytes(1, 0x00)) == toBigEndian(u256(0)));
BOOST_CHECK(callContractFunction(0, bytes(1, 0x01)) == toBigEndian(u256(0)));
BOOST_CHECK(callContractFunction(1, bytes(1, 0x00) + toBigEndian(u256(0x1234))) == bytes());
BOOST_CHECK(callContractFunction(1, bytes(1, 0x01) + toBigEndian(u256(0x8765))) == bytes());
BOOST_CHECK(callContractFunction(0, bytes(1, 0x00)) == toBigEndian(u256(0x1234)));
BOOST_CHECK(callContractFunction(0, bytes(1, 0x01)) == toBigEndian(u256(0x8765)));
BOOST_CHECK(callContractFunction(1, bytes(1, 0x00) + toBigEndian(u256(0x3))) == bytes());
BOOST_CHECK(callContractFunction(0, bytes(1, 0x00)) == toBigEndian(u256(0x3)));
}
BOOST_AUTO_TEST_CASE(simple_mapping)
{
char const* sourceCode = "contract test {\n"
" mapping(uint8 => uint8) table;\n"
" function get(uint8 k) returns (uint8 v) {\n"
" return table[k];\n"
" }\n"
" function set(uint8 k, uint8 v) {\n"
" table[k] = v;\n"
" }\n"
"}";
compileAndRun(sourceCode);
BOOST_CHECK(callContractFunction(0, bytes({0x00})) == bytes({0x00}));
BOOST_CHECK(callContractFunction(0, bytes({0x01})) == bytes({0x00}));
BOOST_CHECK(callContractFunction(0, bytes({0xa7})) == bytes({0x00}));
callContractFunction(1, bytes({0x01, 0xa1}));
BOOST_CHECK(callContractFunction(0, bytes({0x00})) == bytes({0x00}));
BOOST_CHECK(callContractFunction(0, bytes({0x01})) == bytes({0xa1}));
BOOST_CHECK(callContractFunction(0, bytes({0xa7})) == bytes({0x00}));
callContractFunction(1, bytes({0x00, 0xef}));
BOOST_CHECK(callContractFunction(0, bytes({0x00})) == bytes({0xef}));
BOOST_CHECK(callContractFunction(0, bytes({0x01})) == bytes({0xa1}));
BOOST_CHECK(callContractFunction(0, bytes({0xa7})) == bytes({0x00}));
callContractFunction(1, bytes({0x01, 0x05}));
BOOST_CHECK(callContractFunction(0, bytes({0x00})) == bytes({0xef}));
BOOST_CHECK(callContractFunction(0, bytes({0x01})) == bytes({0x05}));
BOOST_CHECK(callContractFunction(0, bytes({0xa7})) == bytes({0x00}));
}
BOOST_AUTO_TEST_CASE(mapping_state)
{
char const* sourceCode = "contract Ballot {\n"
" mapping(address => bool) canVote;\n"
" mapping(address => uint) voteCount;\n"
" mapping(address => bool) voted;\n"
" function getVoteCount(address addr) returns (uint retVoteCount) {\n"
" return voteCount[addr];\n"
" }\n"
" function grantVoteRight(address addr) {\n"
" canVote[addr] = true;\n"
" }\n"
" function vote(address voter, address vote) returns (bool success) {\n"
" if (!canVote[voter] || voted[voter]) return false;\n"
" voted[voter] = true;\n"
" voteCount[vote] = voteCount[vote] + 1;\n"
" return true;\n"
" }\n"
"}\n";
compileAndRun(sourceCode);
class Ballot
{
public:
u256 getVoteCount(u160 _address) { return m_voteCount[_address]; }
void grantVoteRight(u160 _address) { m_canVote[_address] = true; }
bool vote(u160 _voter, u160 _vote)
{
if (!m_canVote[_voter] || m_voted[_voter]) return false;
m_voted[_voter] = true;
m_voteCount[_vote]++;
return true;
}
private:
map m_canVote;
map m_voteCount;
map m_voted;
} ballot;
auto getVoteCount = bind(&Ballot::getVoteCount, &ballot, _1);
auto grantVoteRight = bind(&Ballot::grantVoteRight, &ballot, _1);
auto vote = bind(&Ballot::vote, &ballot, _1, _2);
testSolidityAgainstCpp(0, getVoteCount, u160(0));
testSolidityAgainstCpp(0, getVoteCount, u160(1));
testSolidityAgainstCpp(0, getVoteCount, u160(2));
// voting without vote right shourd be rejected
testSolidityAgainstCpp(2, vote, u160(0), u160(2));
testSolidityAgainstCpp(0, getVoteCount, u160(0));
testSolidityAgainstCpp(0, getVoteCount, u160(1));
testSolidityAgainstCpp(0, getVoteCount, u160(2));
// grant vote rights
testSolidityAgainstCpp(1, grantVoteRight, u160(0));
testSolidityAgainstCpp(1, grantVoteRight, u160(1));
// vote, should increase 2's vote count
testSolidityAgainstCpp(2, vote, u160(0), u160(2));
testSolidityAgainstCpp(0, getVoteCount, u160(0));
testSolidityAgainstCpp(0, getVoteCount, u160(1));
testSolidityAgainstCpp(0, getVoteCount, u160(2));
// vote again, should be rejected
testSolidityAgainstCpp(2, vote, u160(0), u160(1));
testSolidityAgainstCpp(0, getVoteCount, u160(0));
testSolidityAgainstCpp(0, getVoteCount, u160(1));
testSolidityAgainstCpp(0, getVoteCount, u160(2));
// vote without right to vote
testSolidityAgainstCpp(2, vote, u160(2), u160(1));
testSolidityAgainstCpp(0, getVoteCount, u160(0));
testSolidityAgainstCpp(0, getVoteCount, u160(1));
testSolidityAgainstCpp(0, getVoteCount, u160(2));
// grant vote right and now vote again
testSolidityAgainstCpp(1, grantVoteRight, u160(2));
testSolidityAgainstCpp(2, vote, u160(2), u160(1));
testSolidityAgainstCpp(0, getVoteCount, u160(0));
testSolidityAgainstCpp(0, getVoteCount, u160(1));
testSolidityAgainstCpp(0, getVoteCount, u160(2));
}
BOOST_AUTO_TEST_CASE(mapping_state_inc_dec)
{
char const* sourceCode = "contract test {\n"
" uint value;\n"
" mapping(uint => uint) table;\n"
" function f(uint x) returns (uint y) {\n"
" value = x;\n"
" if (x > 0) table[++value] = 8;\n"
" if (x > 1) value--;\n"
" if (x > 2) table[value]++;\n"
" return --table[value++];\n"
" }\n"
"}\n";
compileAndRun(sourceCode);
u256 value = 0;
map table;
auto f = [&](u256 const& _x) -> u256
{
value = _x;
if (_x > 0)
table[++value] = 8;
if (_x > 1)
value --;
if (_x > 2)
table[value]++;
return --table[value++];
};
testSolidityAgainstCppOnRange(0, f, 0, 5);
}
BOOST_AUTO_TEST_CASE(multi_level_mapping)
{
char const* sourceCode = "contract test {\n"
" mapping(uint => mapping(uint => uint)) table;\n"
" function f(uint x, uint y, uint z) returns (uint w) {\n"
" if (z == 0) return table[x][y];\n"
" else return table[x][y] = z;\n"
" }\n"
"}\n";
compileAndRun(sourceCode);
map> table;
auto f = [&](u256 const& _x, u256 const& _y, u256 const& _z) -> u256
{
if (_z == 0) return table[_x][_y];
else return table[_x][_y] = _z;
};
testSolidityAgainstCpp(0, f, u256(4), u256(5), u256(0));
testSolidityAgainstCpp(0, f, u256(5), u256(4), u256(0));
testSolidityAgainstCpp(0, f, u256(4), u256(5), u256(9));
testSolidityAgainstCpp(0, f, u256(4), u256(5), u256(0));
testSolidityAgainstCpp(0, f, u256(5), u256(4), u256(0));
testSolidityAgainstCpp(0, f, u256(5), u256(4), u256(7));
testSolidityAgainstCpp(0, f, u256(4), u256(5), u256(0));
testSolidityAgainstCpp(0, f, u256(5), u256(4), u256(0));
}
BOOST_AUTO_TEST_CASE(structs)
{
char const* sourceCode = "contract test {\n"
" struct s1 {\n"
" uint8 x;\n"
" bool y;\n"
" }\n"
" struct s2 {\n"
" uint32 z;\n"
" s1 s1data;\n"
" mapping(uint8 => s2) recursive;\n"
" }\n"
" s2 data;\n"
" function check() returns (bool ok) {\n"
" return data.z == 1 && data.s1data.x == 2 && \n"
" data.s1data.y == true && \n"
" data.recursive[3].recursive[4].z == 5 && \n"
" data.recursive[4].recursive[3].z == 6 && \n"
" data.recursive[0].s1data.y == false && \n"
" data.recursive[4].z == 9;\n"
" }\n"
" function set() {\n"
" data.z = 1;\n"
" data.s1data.x = 2;\n"
" data.s1data.y = true;\n"
" data.recursive[3].recursive[4].z = 5;\n"
" data.recursive[4].recursive[3].z = 6;\n"
" data.recursive[0].s1data.y = false;\n"
" data.recursive[4].z = 9;\n"
" }\n"
"}\n";
compileAndRun(sourceCode);
BOOST_CHECK(callContractFunction(0) == bytes({0x00}));
BOOST_CHECK(callContractFunction(1) == bytes());
BOOST_CHECK(callContractFunction(0) == bytes({0x01}));
}
BOOST_AUTO_TEST_CASE(constructor)
{
char const* sourceCode = "contract test {\n"
" mapping(uint => uint) data;\n"
" function test() {\n"
" data[7] = 8;\n"
" }\n"
" function get(uint key) returns (uint value) {\n"
" return data[key];"
" }\n"
"}\n";
compileAndRun(sourceCode);
map data;
data[7] = 8;
auto get = [&](u256 const& _x) -> u256
{
return data[_x];
};
testSolidityAgainstCpp(0, get, u256(6));
testSolidityAgainstCpp(0, get, u256(7));
}
BOOST_AUTO_TEST_CASE(balance)
{
char const* sourceCode = "contract test {\n"
" function getBalance() returns (u256 balance) {\n"
" return address(this).balance;\n"
" }\n"
"}\n";
compileAndRun(sourceCode, 23);
BOOST_CHECK(callContractFunction(0) == toBigEndian(u256(23)));
}
BOOST_AUTO_TEST_SUITE_END()
}
}
} // end namespaces