/* This file is part of solidity. solidity is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. solidity is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with solidity. If not, see . */ /** * @author Christian * @date 2014 * Solidity compiler. */ #include #include #include #include #include #include #include #include #include #include #include using namespace std; using namespace dev; using namespace dev::solidity; /** * Simple helper class to ensure that the stack height is the same at certain places in the code. */ class StackHeightChecker { public: StackHeightChecker(CompilerContext const& _context): m_context(_context), stackHeight(m_context.stackHeight()) {} void check() { solAssert(m_context.stackHeight() == stackHeight, std::string("I sense a disturbance in the stack: ") + std::to_string(m_context.stackHeight()) + " vs " + std::to_string(stackHeight)); } private: CompilerContext const& m_context; unsigned stackHeight; }; void ContractCompiler::compileContract( ContractDefinition const& _contract, std::map const& _contracts ) { CompilerContext::LocationSetter locationSetter(m_context, _contract); initializeContext(_contract, _contracts); appendFunctionSelector(_contract); appendMissingFunctions(); } size_t ContractCompiler::compileConstructor( ContractDefinition const& _contract, std::map const& _contracts ) { CompilerContext::LocationSetter locationSetter(m_context, _contract); initializeContext(_contract, _contracts); return packIntoContractCreator(_contract); } size_t ContractCompiler::compileClone( ContractDefinition const& _contract, map const& _contracts ) { initializeContext(_contract, _contracts); appendInitAndConstructorCode(_contract); //@todo determine largest return size of all runtime functions auto runtimeSub = m_context.addSubroutine(cloneRuntime()); // stack contains sub size m_context << Instruction::DUP1 << runtimeSub << u256(0) << Instruction::CODECOPY; m_context << u256(0) << Instruction::RETURN; appendMissingFunctions(); return size_t(runtimeSub.data()); } void ContractCompiler::initializeContext( ContractDefinition const& _contract, map const& _compiledContracts ) { m_context.setCompiledContracts(_compiledContracts); m_context.setInheritanceHierarchy(_contract.annotation().linearizedBaseContracts); CompilerUtils(m_context).initialiseFreeMemoryPointer(); registerStateVariables(_contract); m_context.resetVisitedNodes(&_contract); } void ContractCompiler::appendCallValueCheck() { // Throw if function is not payable but call contained ether. m_context << Instruction::CALLVALUE; m_context.appendConditionalRevert(); } void ContractCompiler::appendInitAndConstructorCode(ContractDefinition const& _contract) { // Determine the arguments that are used for the base constructors. std::vector const& bases = _contract.annotation().linearizedBaseContracts; for (ContractDefinition const* contract: bases) { if (FunctionDefinition const* constructor = contract->constructor()) for (auto const& modifier: constructor->modifiers()) { auto baseContract = dynamic_cast( modifier->name()->annotation().referencedDeclaration); if (baseContract) if (m_baseArguments.count(baseContract->constructor()) == 0) m_baseArguments[baseContract->constructor()] = &modifier->arguments(); } for (ASTPointer const& base: contract->baseContracts()) { ContractDefinition const* baseContract = dynamic_cast( base->name().annotation().referencedDeclaration ); solAssert(baseContract, ""); if (m_baseArguments.count(baseContract->constructor()) == 0) m_baseArguments[baseContract->constructor()] = &base->arguments(); } } // Initialization of state variables in base-to-derived order. for (ContractDefinition const* contract: boost::adaptors::reverse(bases)) initializeStateVariables(*contract); if (FunctionDefinition const* constructor = _contract.constructor()) appendConstructor(*constructor); else if (auto c = m_context.nextConstructor(_contract)) appendBaseConstructor(*c); else appendCallValueCheck(); } size_t ContractCompiler::packIntoContractCreator(ContractDefinition const& _contract) { solAssert(!!m_runtimeCompiler, ""); appendInitAndConstructorCode(_contract); // We jump to the deploy routine because we first have to append all missing functions, // which can cause further functions to be added to the runtime context. eth::AssemblyItem deployRoutine = m_context.appendJumpToNew(); // We have to include copies of functions in the construction time and runtime context // because of absolute jumps. appendMissingFunctions(); m_runtimeCompiler->appendMissingFunctions(); m_context << deployRoutine; solAssert(m_context.runtimeSub() != size_t(-1), "Runtime sub not registered"); m_context.pushSubroutineSize(m_context.runtimeSub()); m_context << Instruction::DUP1; m_context.pushSubroutineOffset(m_context.runtimeSub()); m_context << u256(0) << Instruction::CODECOPY; m_context << u256(0) << Instruction::RETURN; return m_context.runtimeSub(); } void ContractCompiler::appendBaseConstructor(FunctionDefinition const& _constructor) { CompilerContext::LocationSetter locationSetter(m_context, _constructor); FunctionType constructorType(_constructor); if (!constructorType.parameterTypes().empty()) { solAssert(m_baseArguments.count(&_constructor), ""); std::vector> const* arguments = m_baseArguments[&_constructor]; solAssert(arguments, ""); for (unsigned i = 0; i < arguments->size(); ++i) compileExpression(*(arguments->at(i)), constructorType.parameterTypes()[i]); } _constructor.accept(*this); } void ContractCompiler::appendConstructor(FunctionDefinition const& _constructor) { CompilerContext::LocationSetter locationSetter(m_context, _constructor); if (!_constructor.isPayable()) appendCallValueCheck(); // copy constructor arguments from code to memory and then to stack, they are supplied after the actual program if (!_constructor.parameters().empty()) { unsigned argumentSize = 0; for (ASTPointer const& var: _constructor.parameters()) if (var->annotation().type->isDynamicallySized()) { argumentSize = 0; break; } else argumentSize += var->annotation().type->calldataEncodedSize(); CompilerUtils(m_context).fetchFreeMemoryPointer(); if (argumentSize == 0) { // argument size is dynamic, use CODESIZE to determine it m_context.appendProgramSize(); // program itself // CODESIZE is program plus manually added arguments m_context << Instruction::CODESIZE << Instruction::SUB; } else m_context << u256(argumentSize); // stack: m_context << Instruction::DUP1; m_context.appendProgramSize(); m_context << Instruction::DUP4 << Instruction::CODECOPY; m_context << Instruction::DUP2 << Instruction::ADD; CompilerUtils(m_context).storeFreeMemoryPointer(); // stack: appendCalldataUnpacker(FunctionType(_constructor).parameterTypes(), true); } _constructor.accept(*this); } void ContractCompiler::appendFunctionSelector(ContractDefinition const& _contract) { map, FunctionTypePointer> interfaceFunctions = _contract.interfaceFunctions(); map, const eth::AssemblyItem> callDataUnpackerEntryPoints; FunctionDefinition const* fallback = _contract.fallbackFunction(); eth::AssemblyItem notFound = m_context.newTag(); // shortcut messages without data if we have many functions in order to be able to receive // ether with constant gas if (interfaceFunctions.size() > 5 || fallback) { m_context << Instruction::CALLDATASIZE << Instruction::ISZERO; m_context.appendConditionalJumpTo(notFound); } // retrieve the function signature hash from the calldata if (!interfaceFunctions.empty()) CompilerUtils(m_context).loadFromMemory(0, IntegerType(CompilerUtils::dataStartOffset * 8), true); // stack now is: 1 0 for (auto const& it: interfaceFunctions) { callDataUnpackerEntryPoints.insert(std::make_pair(it.first, m_context.newTag())); m_context << dupInstruction(1) << u256(FixedHash<4>::Arith(it.first)) << Instruction::EQ; m_context.appendConditionalJumpTo(callDataUnpackerEntryPoints.at(it.first)); } m_context.appendJumpTo(notFound); m_context << notFound; if (fallback) { if (!fallback->isPayable()) appendCallValueCheck(); solAssert(fallback->isFallback(), ""); solAssert(FunctionType(*fallback).parameterTypes().empty(), ""); solAssert(FunctionType(*fallback).returnParameterTypes().empty(), ""); fallback->accept(*this); m_context << Instruction::STOP; } else m_context.appendRevert(); for (auto const& it: interfaceFunctions) { FunctionTypePointer const& functionType = it.second; solAssert(functionType->hasDeclaration(), ""); CompilerContext::LocationSetter locationSetter(m_context, functionType->declaration()); m_context << callDataUnpackerEntryPoints.at(it.first); m_context.setStackOffset(0); // We have to allow this for libraries, because value of the previous // call is still visible in the delegatecall. if (!functionType->isPayable() && !_contract.isLibrary()) appendCallValueCheck(); // Return tag is used to jump out of the function. eth::AssemblyItem returnTag = m_context.pushNewTag(); if (!functionType->parameterTypes().empty()) { // Parameter for calldataUnpacker m_context << CompilerUtils::dataStartOffset; appendCalldataUnpacker(functionType->parameterTypes()); } m_context.appendJumpTo(m_context.functionEntryLabel(functionType->declaration())); m_context << returnTag; // Return tag and input parameters get consumed. m_context.adjustStackOffset( CompilerUtils(m_context).sizeOnStack(functionType->returnParameterTypes()) - CompilerUtils(m_context).sizeOnStack(functionType->parameterTypes()) - 1 ); // Consumes the return parameters. appendReturnValuePacker(functionType->returnParameterTypes(), _contract.isLibrary()); } } void ContractCompiler::appendCalldataUnpacker(TypePointers const& _typeParameters, bool _fromMemory) { // We do not check the calldata size, everything is zero-padded //@todo this does not yet support nested dynamic arrays // Retain the offset pointer as base_offset, the point from which the data offsets are computed. m_context << Instruction::DUP1; for (TypePointer const& parameterType: _typeParameters) { // stack: v1 v2 ... v(k-1) base_offset current_offset TypePointer type = parameterType->decodingType(); solAssert(type, "No decoding type found."); if (type->category() == Type::Category::Array) { auto const& arrayType = dynamic_cast(*type); solUnimplementedAssert(!arrayType.baseType()->isDynamicallySized(), "Nested arrays not yet implemented."); if (_fromMemory) { solUnimplementedAssert( arrayType.baseType()->isValueType(), "Nested memory arrays not yet implemented here." ); // @todo If base type is an array or struct, it is still calldata-style encoded, so // we would have to convert it like below. solAssert(arrayType.location() == DataLocation::Memory, ""); if (arrayType.isDynamicallySized()) { // compute data pointer m_context << Instruction::DUP1 << Instruction::MLOAD; m_context << Instruction::DUP3 << Instruction::ADD; m_context << Instruction::SWAP2 << Instruction::SWAP1; m_context << u256(0x20) << Instruction::ADD; } else { m_context << Instruction::SWAP1 << Instruction::DUP2; m_context << u256(arrayType.calldataEncodedSize(true)) << Instruction::ADD; } } else { // first load from calldata and potentially convert to memory if arrayType is memory TypePointer calldataType = arrayType.copyForLocation(DataLocation::CallData, false); if (calldataType->isDynamicallySized()) { // put on stack: data_pointer length CompilerUtils(m_context).loadFromMemoryDynamic(IntegerType(256), !_fromMemory); // stack: base_offset data_offset next_pointer m_context << Instruction::SWAP1 << Instruction::DUP3 << Instruction::ADD; // stack: base_offset next_pointer data_pointer // retrieve length CompilerUtils(m_context).loadFromMemoryDynamic(IntegerType(256), !_fromMemory, true); // stack: base_offset next_pointer length data_pointer m_context << Instruction::SWAP2; // stack: base_offset data_pointer length next_pointer } else { // leave the pointer on the stack m_context << Instruction::DUP1; m_context << u256(calldataType->calldataEncodedSize()) << Instruction::ADD; } if (arrayType.location() == DataLocation::Memory) { // stack: base_offset calldata_ref [length] next_calldata // copy to memory // move calldata type up again CompilerUtils(m_context).moveIntoStack(calldataType->sizeOnStack()); CompilerUtils(m_context).convertType(*calldataType, arrayType, false, false, true); // fetch next pointer again CompilerUtils(m_context).moveToStackTop(arrayType.sizeOnStack()); } // move base_offset up CompilerUtils(m_context).moveToStackTop(1 + arrayType.sizeOnStack()); m_context << Instruction::SWAP1; } } else { solAssert(!type->isDynamicallySized(), "Unknown dynamically sized type: " + type->toString()); CompilerUtils(m_context).loadFromMemoryDynamic(*type, !_fromMemory, true); CompilerUtils(m_context).moveToStackTop(1 + type->sizeOnStack()); m_context << Instruction::SWAP1; } // stack: v1 v2 ... v(k-1) v(k) base_offset mem_offset } m_context << Instruction::POP << Instruction::POP; } void ContractCompiler::appendReturnValuePacker(TypePointers const& _typeParameters, bool _isLibrary) { CompilerUtils utils(m_context); if (_typeParameters.empty()) m_context << Instruction::STOP; else { utils.fetchFreeMemoryPointer(); //@todo optimization: if we return a single memory array, there should be enough space before // its data to add the needed parts and we avoid a memory copy. utils.encodeToMemory(_typeParameters, _typeParameters, true, false, _isLibrary); utils.toSizeAfterFreeMemoryPointer(); m_context << Instruction::RETURN; } } void ContractCompiler::registerStateVariables(ContractDefinition const& _contract) { for (auto const& var: ContractType(_contract).stateVariables()) m_context.addStateVariable(*get<0>(var), get<1>(var), get<2>(var)); } void ContractCompiler::initializeStateVariables(ContractDefinition const& _contract) { for (VariableDeclaration const* variable: _contract.stateVariables()) if (variable->value() && !variable->isConstant()) ExpressionCompiler(m_context, m_optimise).appendStateVariableInitialization(*variable); } bool ContractCompiler::visit(VariableDeclaration const& _variableDeclaration) { solAssert(_variableDeclaration.isStateVariable(), "Compiler visit to non-state variable declaration."); CompilerContext::LocationSetter locationSetter(m_context, _variableDeclaration); m_context.startFunction(_variableDeclaration); m_breakTags.clear(); m_continueTags.clear(); if (_variableDeclaration.isConstant()) ExpressionCompiler(m_context, m_optimise).appendConstStateVariableAccessor(_variableDeclaration); else ExpressionCompiler(m_context, m_optimise).appendStateVariableAccessor(_variableDeclaration); return false; } bool ContractCompiler::visit(FunctionDefinition const& _function) { CompilerContext::LocationSetter locationSetter(m_context, _function); m_context.startFunction(_function); // stack upon entry: [return address] [arg0] [arg1] ... [argn] // reserve additional slots: [retarg0] ... [retargm] [localvar0] ... [localvarp] unsigned parametersSize = CompilerUtils::sizeOnStack(_function.parameters()); if (!_function.isConstructor()) // adding 1 for return address. m_context.adjustStackOffset(parametersSize + 1); for (ASTPointer const& variable: _function.parameters()) { m_context.addVariable(*variable, parametersSize); parametersSize -= variable->annotation().type->sizeOnStack(); } for (ASTPointer const& variable: _function.returnParameters()) appendStackVariableInitialisation(*variable); for (VariableDeclaration const* localVariable: _function.localVariables()) appendStackVariableInitialisation(*localVariable); if (_function.isConstructor()) if (auto c = m_context.nextConstructor(dynamic_cast(*_function.scope()))) appendBaseConstructor(*c); solAssert(m_returnTags.empty(), ""); m_breakTags.clear(); m_continueTags.clear(); m_stackCleanupForReturn = 0; m_currentFunction = &_function; m_modifierDepth = -1; appendModifierOrFunctionCode(); solAssert(m_returnTags.empty(), ""); // Now we need to re-shuffle the stack. For this we keep a record of the stack layout // that shows the target positions of the elements, where "-1" denotes that this element needs // to be removed from the stack. // Note that the fact that the return arguments are of increasing index is vital for this // algorithm to work. unsigned const c_argumentsSize = CompilerUtils::sizeOnStack(_function.parameters()); unsigned const c_returnValuesSize = CompilerUtils::sizeOnStack(_function.returnParameters()); unsigned const c_localVariablesSize = CompilerUtils::sizeOnStack(_function.localVariables()); vector stackLayout; stackLayout.push_back(c_returnValuesSize); // target of return address stackLayout += vector(c_argumentsSize, -1); // discard all arguments for (unsigned i = 0; i < c_returnValuesSize; ++i) stackLayout.push_back(i); stackLayout += vector(c_localVariablesSize, -1); if (stackLayout.size() > 17) BOOST_THROW_EXCEPTION( CompilerError() << errinfo_sourceLocation(_function.location()) << errinfo_comment("Stack too deep, try removing local variables.") ); while (stackLayout.back() != int(stackLayout.size() - 1)) if (stackLayout.back() < 0) { m_context << Instruction::POP; stackLayout.pop_back(); } else { m_context << swapInstruction(stackLayout.size() - stackLayout.back() - 1); swap(stackLayout[stackLayout.back()], stackLayout.back()); } //@todo assert that everything is in place now for (ASTPointer const& variable: _function.parameters() + _function.returnParameters()) m_context.removeVariable(*variable); for (VariableDeclaration const* localVariable: _function.localVariables()) m_context.removeVariable(*localVariable); m_context.adjustStackOffset(-(int)c_returnValuesSize); /// The constructor and the fallback function doesn't to jump out. if (!_function.isConstructor() && !_function.isFallback()) m_context.appendJump(eth::AssemblyItem::JumpType::OutOfFunction); return false; } bool ContractCompiler::visit(InlineAssembly const& _inlineAssembly) { unsigned startStackHeight = m_context.stackHeight(); julia::ExternalIdentifierAccess identifierAccess; identifierAccess.resolve = [&](assembly::Identifier const& _identifier, julia::IdentifierContext, bool) { auto ref = _inlineAssembly.annotation().externalReferences.find(&_identifier); if (ref == _inlineAssembly.annotation().externalReferences.end()) return size_t(-1); return ref->second.valueSize; }; identifierAccess.generateCode = [&](assembly::Identifier const& _identifier, julia::IdentifierContext _context, julia::AbstractAssembly& _assembly) { auto ref = _inlineAssembly.annotation().externalReferences.find(&_identifier); solAssert(ref != _inlineAssembly.annotation().externalReferences.end(), ""); Declaration const* decl = ref->second.declaration; solAssert(!!decl, ""); if (_context == julia::IdentifierContext::RValue) { int const depositBefore = _assembly.stackHeight(); solAssert(!!decl->type(), "Type of declaration required but not yet determined."); if (FunctionDefinition const* functionDef = dynamic_cast(decl)) { solAssert(!ref->second.isOffset && !ref->second.isSlot, ""); functionDef = &m_context.resolveVirtualFunction(*functionDef); auto functionEntryLabel = m_context.functionEntryLabel(*functionDef).pushTag(); solAssert(functionEntryLabel.data() <= std::numeric_limits::max(), ""); _assembly.appendLabelReference(size_t(functionEntryLabel.data())); // If there is a runtime context, we have to merge both labels into the same // stack slot in case we store it in storage. if (CompilerContext* rtc = m_context.runtimeContext()) { _assembly.appendConstant(u256(1) << 32); _assembly.appendInstruction(Instruction::MUL); auto runtimeEntryLabel = rtc->functionEntryLabel(*functionDef).toSubAssemblyTag(m_context.runtimeSub()); solAssert(runtimeEntryLabel.data() <= std::numeric_limits::max(), ""); _assembly.appendLabelReference(size_t(runtimeEntryLabel.data())); _assembly.appendInstruction(Instruction::OR); } } else if (auto variable = dynamic_cast(decl)) { solAssert(!variable->isConstant(), ""); if (m_context.isStateVariable(decl)) { auto const& location = m_context.storageLocationOfVariable(*decl); if (ref->second.isSlot) m_context << location.first; else if (ref->second.isOffset) m_context << u256(location.second); else solAssert(false, ""); } else if (m_context.isLocalVariable(decl)) { int stackDiff = _assembly.stackHeight() - m_context.baseStackOffsetOfVariable(*variable); if (ref->second.isSlot || ref->second.isOffset) { solAssert(variable->type()->dataStoredIn(DataLocation::Storage), ""); unsigned size = variable->type()->sizeOnStack(); if (size == 2) { // slot plus offset if (ref->second.isOffset) stackDiff--; } else { solAssert(size == 1, ""); // only slot, offset is zero if (ref->second.isOffset) { _assembly.appendConstant(u256(0)); return; } } } else solAssert(variable->type()->sizeOnStack() == 1, ""); if (stackDiff < 1 || stackDiff > 16) BOOST_THROW_EXCEPTION( CompilerError() << errinfo_sourceLocation(_inlineAssembly.location()) << errinfo_comment("Stack too deep, try removing local variables.") ); solAssert(variable->type()->sizeOnStack() == 1, ""); _assembly.appendInstruction(dupInstruction(stackDiff)); } else solAssert(false, ""); } else if (auto contract = dynamic_cast(decl)) { solAssert(!ref->second.isOffset && !ref->second.isSlot, ""); solAssert(contract->isLibrary(), ""); _assembly.appendLinkerSymbol(contract->fullyQualifiedName()); } else solAssert(false, "Invalid declaration type."); solAssert(_assembly.stackHeight() - depositBefore == int(ref->second.valueSize), ""); } else { // lvalue context solAssert(!ref->second.isOffset && !ref->second.isSlot, ""); auto variable = dynamic_cast(decl); solAssert( !!variable && m_context.isLocalVariable(variable), "Can only assign to stack variables in inline assembly." ); solAssert(variable->type()->sizeOnStack() == 1, ""); int stackDiff = _assembly.stackHeight() - m_context.baseStackOffsetOfVariable(*variable) - 1; if (stackDiff > 16 || stackDiff < 1) BOOST_THROW_EXCEPTION( CompilerError() << errinfo_sourceLocation(_inlineAssembly.location()) << errinfo_comment("Stack too deep(" + to_string(stackDiff) + "), try removing local variables.") ); _assembly.appendInstruction(swapInstruction(stackDiff)); _assembly.appendInstruction(Instruction::POP); } }; solAssert(_inlineAssembly.annotation().analysisInfo, ""); assembly::CodeGenerator::assemble( _inlineAssembly.operations(), *_inlineAssembly.annotation().analysisInfo, m_context.nonConstAssembly(), identifierAccess ); m_context.setStackOffset(startStackHeight); return false; } bool ContractCompiler::visit(IfStatement const& _ifStatement) { StackHeightChecker checker(m_context); CompilerContext::LocationSetter locationSetter(m_context, _ifStatement); compileExpression(_ifStatement.condition()); m_context << Instruction::ISZERO; eth::AssemblyItem falseTag = m_context.appendConditionalJump(); eth::AssemblyItem endTag = falseTag; _ifStatement.trueStatement().accept(*this); if (_ifStatement.falseStatement()) { endTag = m_context.appendJumpToNew(); m_context << falseTag; _ifStatement.falseStatement()->accept(*this); } m_context << endTag; checker.check(); return false; } bool ContractCompiler::visit(WhileStatement const& _whileStatement) { StackHeightChecker checker(m_context); CompilerContext::LocationSetter locationSetter(m_context, _whileStatement); eth::AssemblyItem loopStart = m_context.newTag(); eth::AssemblyItem loopEnd = m_context.newTag(); m_continueTags.push_back(loopStart); m_breakTags.push_back(loopEnd); m_context << loopStart; // While loops have the condition prepended if (!_whileStatement.isDoWhile()) { compileExpression(_whileStatement.condition()); m_context << Instruction::ISZERO; m_context.appendConditionalJumpTo(loopEnd); } _whileStatement.body().accept(*this); // Do-while loops have the condition appended if (_whileStatement.isDoWhile()) { compileExpression(_whileStatement.condition()); m_context << Instruction::ISZERO; m_context.appendConditionalJumpTo(loopEnd); } m_context.appendJumpTo(loopStart); m_context << loopEnd; m_continueTags.pop_back(); m_breakTags.pop_back(); checker.check(); return false; } bool ContractCompiler::visit(ForStatement const& _forStatement) { StackHeightChecker checker(m_context); CompilerContext::LocationSetter locationSetter(m_context, _forStatement); eth::AssemblyItem loopStart = m_context.newTag(); eth::AssemblyItem loopEnd = m_context.newTag(); eth::AssemblyItem loopNext = m_context.newTag(); m_continueTags.push_back(loopNext); m_breakTags.push_back(loopEnd); if (_forStatement.initializationExpression()) _forStatement.initializationExpression()->accept(*this); m_context << loopStart; // if there is no terminating condition in for, default is to always be true if (_forStatement.condition()) { compileExpression(*_forStatement.condition()); m_context << Instruction::ISZERO; m_context.appendConditionalJumpTo(loopEnd); } _forStatement.body().accept(*this); m_context << loopNext; // for's loop expression if existing if (_forStatement.loopExpression()) _forStatement.loopExpression()->accept(*this); m_context.appendJumpTo(loopStart); m_context << loopEnd; m_continueTags.pop_back(); m_breakTags.pop_back(); checker.check(); return false; } bool ContractCompiler::visit(Continue const& _continueStatement) { CompilerContext::LocationSetter locationSetter(m_context, _continueStatement); if (!m_continueTags.empty()) m_context.appendJumpTo(m_continueTags.back()); return false; } bool ContractCompiler::visit(Break const& _breakStatement) { CompilerContext::LocationSetter locationSetter(m_context, _breakStatement); if (!m_breakTags.empty()) m_context.appendJumpTo(m_breakTags.back()); return false; } bool ContractCompiler::visit(Return const& _return) { CompilerContext::LocationSetter locationSetter(m_context, _return); if (Expression const* expression = _return.expression()) { solAssert(_return.annotation().functionReturnParameters, "Invalid return parameters pointer."); vector> const& returnParameters = _return.annotation().functionReturnParameters->parameters(); TypePointers types; for (auto const& retVariable: returnParameters) types.push_back(retVariable->annotation().type); TypePointer expectedType; if (expression->annotation().type->category() == Type::Category::Tuple || types.size() != 1) expectedType = make_shared(types); else expectedType = types.front(); compileExpression(*expression, expectedType); for (auto const& retVariable: boost::adaptors::reverse(returnParameters)) CompilerUtils(m_context).moveToStackVariable(*retVariable); } for (unsigned i = 0; i < m_stackCleanupForReturn; ++i) m_context << Instruction::POP; m_context.appendJumpTo(m_returnTags.back()); m_context.adjustStackOffset(m_stackCleanupForReturn); return false; } bool ContractCompiler::visit(Throw const& _throw) { CompilerContext::LocationSetter locationSetter(m_context, _throw); // Do not send back an error detail. m_context.appendRevert(); return false; } bool ContractCompiler::visit(VariableDeclarationStatement const& _variableDeclarationStatement) { StackHeightChecker checker(m_context); CompilerContext::LocationSetter locationSetter(m_context, _variableDeclarationStatement); if (Expression const* expression = _variableDeclarationStatement.initialValue()) { CompilerUtils utils(m_context); compileExpression(*expression); TypePointers valueTypes; if (auto tupleType = dynamic_cast(expression->annotation().type.get())) valueTypes = tupleType->components(); else valueTypes = TypePointers{expression->annotation().type}; auto const& assignments = _variableDeclarationStatement.annotation().assignments; solAssert(assignments.size() == valueTypes.size(), ""); for (size_t i = 0; i < assignments.size(); ++i) { size_t j = assignments.size() - i - 1; solAssert(!!valueTypes[j], ""); VariableDeclaration const* varDecl = assignments[j]; if (!varDecl) utils.popStackElement(*valueTypes[j]); else { utils.convertType(*valueTypes[j], *varDecl->annotation().type); utils.moveToStackVariable(*varDecl); } } } checker.check(); return false; } bool ContractCompiler::visit(ExpressionStatement const& _expressionStatement) { StackHeightChecker checker(m_context); CompilerContext::LocationSetter locationSetter(m_context, _expressionStatement); Expression const& expression = _expressionStatement.expression(); compileExpression(expression); CompilerUtils(m_context).popStackElement(*expression.annotation().type); checker.check(); return false; } bool ContractCompiler::visit(PlaceholderStatement const& _placeholderStatement) { StackHeightChecker checker(m_context); CompilerContext::LocationSetter locationSetter(m_context, _placeholderStatement); appendModifierOrFunctionCode(); checker.check(); return true; } void ContractCompiler::appendMissingFunctions() { while (Declaration const* function = m_context.nextFunctionToCompile()) { m_context.setStackOffset(0); function->accept(*this); solAssert(m_context.nextFunctionToCompile() != function, "Compiled the wrong function?"); } m_context.appendMissingLowLevelFunctions(); } void ContractCompiler::appendModifierOrFunctionCode() { solAssert(m_currentFunction, ""); unsigned stackSurplus = 0; Block const* codeBlock = nullptr; vector addedVariables; m_modifierDepth++; if (m_modifierDepth >= m_currentFunction->modifiers().size()) { solAssert(m_currentFunction->isImplemented(), ""); codeBlock = &m_currentFunction->body(); } else { ASTPointer const& modifierInvocation = m_currentFunction->modifiers()[m_modifierDepth]; // constructor call should be excluded if (dynamic_cast(modifierInvocation->name()->annotation().referencedDeclaration)) appendModifierOrFunctionCode(); else { ModifierDefinition const& modifier = m_context.functionModifier(modifierInvocation->name()->name()); CompilerContext::LocationSetter locationSetter(m_context, modifier); solAssert(modifier.parameters().size() == modifierInvocation->arguments().size(), ""); for (unsigned i = 0; i < modifier.parameters().size(); ++i) { m_context.addVariable(*modifier.parameters()[i]); addedVariables.push_back(modifier.parameters()[i].get()); compileExpression( *modifierInvocation->arguments()[i], modifier.parameters()[i]->annotation().type ); } for (VariableDeclaration const* localVariable: modifier.localVariables()) { addedVariables.push_back(localVariable); appendStackVariableInitialisation(*localVariable); } stackSurplus = CompilerUtils::sizeOnStack(modifier.parameters()) + CompilerUtils::sizeOnStack(modifier.localVariables()); codeBlock = &modifier.body(); } } if (codeBlock) { m_returnTags.push_back(m_context.newTag()); codeBlock->accept(*this); solAssert(!m_returnTags.empty(), ""); m_context << m_returnTags.back(); m_returnTags.pop_back(); CompilerUtils(m_context).popStackSlots(stackSurplus); for (auto var: addedVariables) m_context.removeVariable(*var); } m_modifierDepth--; } void ContractCompiler::appendStackVariableInitialisation(VariableDeclaration const& _variable) { CompilerContext::LocationSetter location(m_context, _variable); m_context.addVariable(_variable); CompilerUtils(m_context).pushZeroValue(*_variable.annotation().type); } void ContractCompiler::compileExpression(Expression const& _expression, TypePointer const& _targetType) { ExpressionCompiler expressionCompiler(m_context, m_optimise); expressionCompiler.compile(_expression); if (_targetType) CompilerUtils(m_context).convertType(*_expression.annotation().type, *_targetType); } eth::AssemblyPointer ContractCompiler::cloneRuntime() { eth::Assembly a; a << Instruction::CALLDATASIZE; a << u256(0) << Instruction::DUP1 << Instruction::CALLDATACOPY; //@todo adjust for larger return values, make this dynamic. a << u256(0x20) << u256(0) << Instruction::CALLDATASIZE; a << u256(0); // this is the address which has to be substituted by the linker. //@todo implement as special "marker" AssemblyItem. a << u256("0xcafecafecafecafecafecafecafecafecafecafe"); a << u256(eth::GasCosts::callGas + 10) << Instruction::GAS << Instruction::SUB; a << Instruction::DELEGATECALL; //Propagate error condition (if DELEGATECALL pushes 0 on stack). a << Instruction::ISZERO; a << Instruction::ISZERO; eth::AssemblyItem afterTag = a.appendJumpI().tag(); a << Instruction::INVALID << afterTag; //@todo adjust for larger return values, make this dynamic. a << u256(0x20) << u256(0) << Instruction::RETURN; return make_shared(a); }