/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see .
*/
/** @file CodeFragment.cpp
* @author Gav Wood
* @date 2014
*/
#include "CodeFragment.h"
#include
#pragma warning(push)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#include
#pragma warning(pop)
#pragma GCC diagnostic pop
#include
#include
#include "CompilerState.h"
#include "Parser.h"
using namespace std;
using namespace dev;
using namespace dev::eth;
void CodeFragment::finalise(CompilerState const& _cs)
{
if (_cs.usedAlloc && _cs.vars.size() && !m_finalised)
{
m_finalised = true;
m_asm.injectStart(Instruction::MSTORE8);
m_asm.injectStart((u256)((_cs.vars.size() + 2) * 32) - 1);
m_asm.injectStart((u256)1);
}
}
CodeFragment::CodeFragment(sp::utree const& _t, CompilerState& _s, ReadCallback const& _readFile, bool _allowASM):
m_readFile(_readFile)
{
/*
std::cout << "CodeFragment. Locals:";
for (auto const& i: _s.defs)
std::cout << i.first << ":" << i.second.m_asm.out();
std::cout << "Args:";
for (auto const& i: _s.args)
std::cout << i.first << ":" << i.second.m_asm.out();
std::cout << "Outers:";
for (auto const& i: _s.outers)
std::cout << i.first << ":" << i.second.m_asm.out();
debugOutAST(std::cout, _t);
std::cout << endl << flush;
*/
switch (_t.which())
{
case sp::utree_type::list_type:
constructOperation(_t, _s);
break;
case sp::utree_type::string_type:
{
auto sr = _t.get, sp::utree_type::string_type>>();
string s(sr.begin(), sr.end());
m_asm.append(s);
break;
}
case sp::utree_type::symbol_type:
{
auto sr = _t.get, sp::utree_type::symbol_type>>();
string s(sr.begin(), sr.end());
string us = boost::algorithm::to_upper_copy(s);
if (_allowASM && c_instructions.count(us))
m_asm.append(c_instructions.at(us));
else if (_s.defs.count(s))
m_asm.append(_s.defs.at(s).m_asm);
else if (_s.args.count(s))
m_asm.append(_s.args.at(s).m_asm);
else if (_s.outers.count(s))
m_asm.append(_s.outers.at(s).m_asm);
else if (us.find_first_of("1234567890") != 0 && us.find_first_not_of("QWERTYUIOPASDFGHJKLZXCVBNM1234567890_-") == string::npos)
{
auto it = _s.vars.find(s);
if (it == _s.vars.end())
error(std::string("Symbol not found: ") + s);
m_asm.append((u256)it->second.first);
}
else
error(s);
break;
}
case sp::utree_type::any_type:
{
bigint i = *_t.get();
if (i < 0 || i > bigint(u256(0) - 1))
error(toString(i));
m_asm.append((u256)i);
break;
}
default:
error("Unexpected fragment type");
break;
}
}
namespace
{
/// Returns true iff the instruction is valid as a function.
bool validFunctionalInstruction(string us)
{
auto it = c_instructions.find(us);
return !(
it == c_instructions.end() ||
solidity::isPushInstruction(it->second) ||
solidity::isDupInstruction(it->second) ||
solidity::isSwapInstruction(it->second) ||
it->second == solidity::Instruction::JUMPDEST
);
}
}
void CodeFragment::constructOperation(sp::utree const& _t, CompilerState& _s)
{
if (_t.tag() == 0 && _t.empty())
error();
else if (_t.tag() == 0 && _t.front().which() != sp::utree_type::symbol_type)
error();
else
{
string s;
string us;
switch (_t.tag())
{
case 0:
{
auto sr = _t.front().get, sp::utree_type::symbol_type>>();
s = string(sr.begin(), sr.end());
us = boost::algorithm::to_upper_copy(s);
break;
}
case 1:
us = "MLOAD";
break;
case 2:
us = "SLOAD";
break;
case 3:
us = "MSTORE";
break;
case 4:
us = "SSTORE";
break;
case 5:
us = "SEQ";
break;
case 6:
us = "CALLDATALOAD";
break;
default:;
}
auto firstAsString = [&]()
{
auto i = *++_t.begin();
if (i.tag())
error(toString(i));
if (i.which() == sp::utree_type::string_type)
{
auto sr = i.get, sp::utree_type::string_type>>();
return string(sr.begin(), sr.end());
}
else if (i.which() == sp::utree_type::symbol_type)
{
auto sr = i.get, sp::utree_type::symbol_type>>();
return _s.getDef(string(sr.begin(), sr.end())).m_asm.backString();
}
return string();
};
auto varAddress = [&](string const& n, bool createMissing = false)
{
if (n.empty())
error("Empty variable name not allowed");
auto it = _s.vars.find(n);
if (it == _s.vars.end())
{
if (createMissing)
{
// Create new variable
bool ok;
tie(it, ok) = _s.vars.insert(make_pair(n, make_pair(_s.stackSize, 32)));
_s.stackSize += 32;
}
else
error(std::string("Symbol not found: ") + n);
}
return it->second.first;
};
// Operations who args are not standard stack-pushers.
bool nonStandard = true;
if (us == "ASM")
{
int c = 0;
for (auto const& i: _t)
if (c++)
m_asm.append(CodeFragment(i, _s, m_readFile, true).m_asm);
}
else if (us == "INCLUDE")
{
if (_t.size() != 2)
error(us);
string fileName = firstAsString();
if (fileName.empty())
error("Empty file name provided");
if (!m_readFile)
error("Import callback not present");
string contents = m_readFile(fileName);
if (contents.empty())
error(std::string("File not found (or empty): ") + fileName);
m_asm.append(CodeFragment::compile(contents, _s, m_readFile).m_asm);
}
else if (us == "SET")
{
if (_t.size() != 3)
error(us);
int c = 0;
for (auto const& i: _t)
if (c++ == 2)
m_asm.append(CodeFragment(i, _s, m_readFile, false).m_asm);
m_asm.append((u256)varAddress(firstAsString(), true));
m_asm.append(Instruction::MSTORE);
}
else if (us == "GET")
{
if (_t.size() != 2)
error(us);
m_asm.append((u256)varAddress(firstAsString()));
m_asm.append(Instruction::MLOAD);
}
else if (us == "REF")
m_asm.append((u256)varAddress(firstAsString()));
else if (us == "DEF")
{
string n;
unsigned ii = 0;
if (_t.size() != 3 && _t.size() != 4)
error(us);
vector args;
for (auto const& i: _t)
{
if (ii == 1)
{
if (i.tag())
error(toString(i));
if (i.which() == sp::utree_type::string_type)
{
auto sr = i.get, sp::utree_type::string_type>>();
n = string(sr.begin(), sr.end());
}
else if (i.which() == sp::utree_type::symbol_type)
{
auto sr = i.get, sp::utree_type::symbol_type>>();
n = _s.getDef(string(sr.begin(), sr.end())).m_asm.backString();
}
}
else if (ii == 2)
if (_t.size() == 3)
{
/// NOTE: some compilers could do the assignment first if this is done in a single line
CodeFragment code = CodeFragment(i, _s, m_readFile);
_s.defs[n] = code;
}
else
for (auto const& j: i)
{
if (j.tag() || j.which() != sp::utree_type::symbol_type)
error();
auto sr = j.get, sp::utree_type::symbol_type>>();
args.push_back(string(sr.begin(), sr.end()));
}
else if (ii == 3)
{
auto k = make_pair(n, args.size());
_s.macros[k].code = i;
_s.macros[k].env = _s.outers;
_s.macros[k].args = args;
for (auto const& i: _s.args)
_s.macros[k].env[i.first] = i.second;
for (auto const& i: _s.defs)
_s.macros[k].env[i.first] = i.second;
}
++ii;
}
}
else if (us == "LIT")
{
if (_t.size() < 3)
error(us);
unsigned ii = 0;
CodeFragment pos;
bytes data;
for (auto const& i: _t)
{
if (ii == 0)
{
ii++;
continue;
}
else if (ii == 1)
{
pos = CodeFragment(i, _s, m_readFile);
if (pos.m_asm.deposit() != 1)
error(toString(i));
}
else if (i.tag() != 0)
{
error(toString(i));
}
else if (i.which() == sp::utree_type::string_type)
{
auto sr = i.get, sp::utree_type::string_type>>();
data.insert(data.end(), (byte const *)sr.begin(), (byte const*)sr.end());
}
else if (i.which() == sp::utree_type::any_type)
{
bigint bi = *i.get();
if (bi < 0)
error(toString(i));
else
{
bytes tmp = toCompactBigEndian(bi);
data.insert(data.end(), tmp.begin(), tmp.end());
}
}
else
{
error(toString(i));
}
ii++;
}
m_asm.append((u256)data.size());
m_asm.append(Instruction::DUP1);
m_asm.append(data);
m_asm.append(pos.m_asm, 1);
m_asm.append(Instruction::CODECOPY);
}
else
nonStandard = false;
if (nonStandard)
return;
std::map const c_arith = {
{ "+", Instruction::ADD },
{ "-", Instruction::SUB },
{ "*", Instruction::MUL },
{ "/", Instruction::DIV },
{ "%", Instruction::MOD },
{ "&", Instruction::AND },
{ "|", Instruction::OR },
{ "^", Instruction::XOR }
};
std::map> const c_binary = {
{ "<", { Instruction::LT, false } },
{ "<=", { Instruction::GT, true } },
{ ">", { Instruction::GT, false } },
{ ">=", { Instruction::LT, true } },
{ "S<", { Instruction::SLT, false } },
{ "S<=", { Instruction::SGT, true } },
{ "S>", { Instruction::SGT, false } },
{ "S>=", { Instruction::SLT, true } },
{ "=", { Instruction::EQ, false } },
{ "!=", { Instruction::EQ, true } }
};
std::map const c_unary = {
{ "!", Instruction::ISZERO },
{ "~", Instruction::NOT }
};
vector code;
CompilerState ns = _s;
ns.vars.clear();
ns.usedAlloc = false;
int c = _t.tag() ? 1 : 0;
for (auto const& i: _t)
if (c++)
{
if (us == "LLL" && c == 1)
code.push_back(CodeFragment(i, ns, m_readFile));
else
code.push_back(CodeFragment(i, _s, m_readFile));
}
auto requireSize = [&](unsigned s) { if (code.size() != s) error(us); };
auto requireMinSize = [&](unsigned s) { if (code.size() < s) error(us); };
auto requireMaxSize = [&](unsigned s) { if (code.size() > s) error(us); };
auto requireDeposit = [&](unsigned i, int s) { if (code[i].m_asm.deposit() != s) error(us); };
if (_s.macros.count(make_pair(s, code.size())))
{
Macro const& m = _s.macros.at(make_pair(s, code.size()));
CompilerState cs = _s;
for (auto const& i: m.env)
cs.outers[i.first] = i.second;
for (auto const& i: cs.defs)
cs.outers[i.first] = i.second;
cs.defs.clear();
for (unsigned i = 0; i < m.args.size(); ++i)
{
//requireDeposit(i, 1);
cs.args[m.args[i]] = code[i];
}
m_asm.append(CodeFragment(m.code, cs, m_readFile).m_asm);
for (auto const& i: cs.defs)
_s.defs[i.first] = i.second;
for (auto const& i: cs.macros)
_s.macros.insert(i);
}
else if (c_instructions.count(us) && validFunctionalInstruction(us))
{
auto it = c_instructions.find(us);
requireSize(instructionInfo(it->second).args);
for (unsigned i = code.size(); i; --i)
m_asm.append(code[i - 1].m_asm, 1);
m_asm.append(it->second);
}
else if (c_arith.count(us))
{
auto it = c_arith.find(us);
requireMinSize(1);
for (unsigned i = code.size(); i; --i)
{
requireDeposit(i - 1, 1);
m_asm.append(code[i - 1].m_asm, 1);
}
for (unsigned i = 1; i < code.size(); ++i)
m_asm.append(it->second);
}
else if (c_binary.count(us))
{
auto it = c_binary.find(us);
requireSize(2);
requireDeposit(0, 1);
requireDeposit(1, 1);
m_asm.append(code[1].m_asm, 1);
m_asm.append(code[0].m_asm, 1);
m_asm.append(it->second.first);
if (it->second.second)
m_asm.append(Instruction::ISZERO);
}
else if (c_unary.count(us))
{
auto it = c_unary.find(us);
requireSize(1);
requireDeposit(0, 1);
m_asm.append(code[0].m_asm, 1);
m_asm.append(it->second);
}
else if (us == "IF")
{
requireSize(3);
requireDeposit(0, 1);
int minDep = min(code[1].m_asm.deposit(), code[2].m_asm.deposit());
m_asm.append(code[0].m_asm);
auto mainBranch = m_asm.appendJumpI();
/// The else branch.
int startDeposit = m_asm.deposit();
m_asm.append(code[2].m_asm, minDep);
auto end = m_asm.appendJump();
int deposit = m_asm.deposit();
m_asm.setDeposit(startDeposit);
/// The main branch.
m_asm << mainBranch.tag();
m_asm.append(code[1].m_asm, minDep);
m_asm << end.tag();
if (m_asm.deposit() != deposit)
error(us);
}
else if (us == "WHEN" || us == "UNLESS")
{
requireSize(2);
requireDeposit(0, 1);
m_asm.append(code[0].m_asm);
if (us == "WHEN")
m_asm.append(Instruction::ISZERO);
auto end = m_asm.appendJumpI();
m_asm.append(code[1].m_asm, 0);
m_asm << end.tag();
}
else if (us == "WHILE" || us == "UNTIL")
{
requireSize(2);
requireDeposit(0, 1);
auto begin = m_asm.append(m_asm.newTag());
m_asm.append(code[0].m_asm);
if (us == "WHILE")
m_asm.append(Instruction::ISZERO);
auto end = m_asm.appendJumpI();
m_asm.append(code[1].m_asm, 0);
m_asm.appendJump(begin);
m_asm << end.tag();
}
else if (us == "FOR")
{
requireSize(4);
requireDeposit(1, 1);
m_asm.append(code[0].m_asm, 0);
auto begin = m_asm.append(m_asm.newTag());
m_asm.append(code[1].m_asm);
m_asm.append(Instruction::ISZERO);
auto end = m_asm.appendJumpI();
m_asm.append(code[3].m_asm, 0);
m_asm.append(code[2].m_asm, 0);
m_asm.appendJump(begin);
m_asm << end.tag();
}
else if (us == "SWITCH")
{
requireMinSize(1);
bool hasDefault = (code.size() % 2 == 1);
int startDeposit = m_asm.deposit();
int targetDeposit = hasDefault ? code[code.size() - 1].m_asm.deposit() : 0;
// The conditions
AssemblyItems jumpTags;
for (unsigned i = 0; i < code.size() - 1; i += 2)
{
requireDeposit(i, 1);
m_asm.append(code[i].m_asm);
jumpTags.push_back(m_asm.appendJumpI());
}
// The default, if present
if (hasDefault)
m_asm.append(code[code.size() - 1].m_asm);
// The targets - appending in reverse makes the top case the most efficient.
if (code.size() > 1)
{
auto end = m_asm.appendJump();
for (int i = 2 * (code.size() / 2 - 1); i >= 0; i -= 2)
{
m_asm << jumpTags[i / 2].tag();
requireDeposit(i + 1, targetDeposit);
m_asm.append(code[i + 1].m_asm);
if (i != 0)
m_asm.appendJump(end);
}
m_asm << end.tag();
}
m_asm.setDeposit(startDeposit + targetDeposit);
}
else if (us == "ALLOC")
{
requireSize(1);
requireDeposit(0, 1);
// (alloc N):
// - Evaluates to (msize) before the allocation - the start of the allocated memory
// - Does not allocate memory when N is zero
// - Size of memory allocated is N bytes rounded up to a multiple of 32
// - Uses MLOAD to expand MSIZE to avoid modifying memory.
auto end = m_asm.newTag();
m_asm.append(Instruction::MSIZE); // Result will be original top of memory
m_asm.append(code[0].m_asm, 1); // The alloc argument N
m_asm.append(Instruction::DUP1);
m_asm.append(Instruction::ISZERO);// (alloc 0) does not change MSIZE
m_asm.appendJumpI(end);
m_asm.append(u256(1));
m_asm.append(Instruction::DUP2); // Copy N
m_asm.append(Instruction::SUB); // N-1
m_asm.append(u256(0x1f)); // Bit mask
m_asm.append(Instruction::NOT); // Invert
m_asm.append(Instruction::AND); // Align N-1 on 32 byte boundary
m_asm.append(Instruction::MSIZE); // MSIZE is cheap
m_asm.append(Instruction::ADD);
m_asm.append(Instruction::MLOAD); // Updates MSIZE
m_asm.append(Instruction::POP); // Discard the result of the MLOAD
m_asm.append(end);
m_asm.append(Instruction::POP); // Discard duplicate N
_s.usedAlloc = true;
}
else if (us == "LLL")
{
requireMinSize(2);
requireMaxSize(3);
requireDeposit(1, 1);
auto subPush = m_asm.appendSubroutine(make_shared(code[0].assembly(ns)));
m_asm.append(Instruction::DUP1);
if (code.size() == 3)
{
requireDeposit(2, 1);
m_asm.append(code[2].m_asm, 1);
m_asm.append(Instruction::LT);
m_asm.append(Instruction::ISZERO);
m_asm.append(Instruction::MUL);
m_asm.append(Instruction::DUP1);
}
m_asm.append(subPush);
m_asm.append(code[1].m_asm, 1);
m_asm.append(Instruction::CODECOPY);
}
else if (us == "&&" || us == "||")
{
requireMinSize(1);
for (unsigned i = 0; i < code.size(); ++i)
requireDeposit(i, 1);
auto end = m_asm.newTag();
if (code.size() > 1)
{
m_asm.append((u256)(us == "||" ? 1 : 0));
for (unsigned i = 1; i < code.size(); ++i)
{
// Check if true - predicate
m_asm.append(code[i - 1].m_asm, 1);
if (us == "&&")
m_asm.append(Instruction::ISZERO);
m_asm.appendJumpI(end);
}
m_asm.append(Instruction::POP);
}
// Check if true - predicate
m_asm.append(code.back().m_asm, 1);
// At end now.
m_asm.append(end);
}
else if (us == "SEQ")
{
unsigned ii = 0;
for (auto const& i: code)
if (++ii < code.size())
m_asm.append(i.m_asm, 0);
else
m_asm.append(i.m_asm);
}
else if (us == "RAW")
{
for (auto const& i: code)
m_asm.append(i.m_asm);
// Leave only the last item on stack.
while (m_asm.deposit() > 1)
m_asm.append(Instruction::POP);
}
else if (us == "BYTECODESIZE")
{
m_asm.appendProgramSize();
}
else if (us.find_first_of("1234567890") != 0 && us.find_first_not_of("QWERTYUIOPASDFGHJKLZXCVBNM1234567890_-") == string::npos)
m_asm.append((u256)varAddress(s));
else
error("Unsupported keyword: '" + us + "'");
}
}
CodeFragment CodeFragment::compile(string const& _src, CompilerState& _s, ReadCallback const& _readFile)
{
CodeFragment ret;
sp::utree o;
parseTreeLLL(_src, o);
if (!o.empty())
ret = CodeFragment(o, _s, _readFile);
_s.treesToKill.push_back(o);
return ret;
}