/* This file is part of solidity. solidity is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. solidity is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with solidity. If not, see . */ /** * @file ExpressionClasses.h * @author Christian * @date 2015 * Container for equivalence classes of expressions for use in common subexpression elimination. */ #pragma once #include #include #include #include #include #include namespace dev { namespace eth { class Pattern; struct ExpressionTemplate; /** * Collection of classes of equivalent expressions that can also determine the class of an expression. * Identifiers are contiguously assigned to new classes starting from zero. */ class ExpressionClasses { public: using Id = unsigned; using Ids = std::vector; struct Expression { Id id; AssemblyItem const* item = nullptr; Ids arguments; /// Storage modification sequence, only used for storage and memory operations. unsigned sequenceNumber = 0; /// Behaves as if this was a tuple of (item->type(), item->data(), arguments, sequenceNumber). bool operator<(Expression const& _other) const; }; /// Retrieves the id of the expression equivalence class resulting from the given item applied to the /// given classes, might also create a new one. /// @param _copyItem if true, copies the assembly item to an internal storage instead of just /// keeping a pointer. /// The @a _sequenceNumber indicates the current storage or memory access sequence. Id find( AssemblyItem const& _item, Ids const& _arguments = {}, bool _copyItem = true, unsigned _sequenceNumber = 0 ); /// @returns the canonical representative of an expression class. Expression const& representative(Id _id) const { return m_representatives.at(_id); } /// @returns the number of classes. Id size() const { return m_representatives.size(); } /// Forces the given @a _item with @a _arguments to the class @a _id. This can be used to /// add prior knowledge e.g. about CALLDATA, but has to be used with caution. Will not work as /// expected if @a _item applied to @a _arguments already exists. void forceEqual(Id _id, AssemblyItem const& _item, Ids const& _arguments, bool _copyItem = true); /// @returns the id of a new class which is different to all other classes. Id newClass(SourceLocation const& _location); /// @returns true if the values of the given classes are known to be different (on every input). /// @note that this function might still return false for some different inputs. bool knownToBeDifferent(Id _a, Id _b); /// Similar to @a knownToBeDifferent but require that abs(_a - b) >= 32. bool knownToBeDifferentBy32(Id _a, Id _b); /// @returns true if the value of the given class is known to be zero. /// @note that this is not the negation of knownNonZero bool knownZero(Id _c); /// @returns true if the value of the given class is known to be nonzero. /// @note that this is not the negation of knownZero bool knownNonZero(Id _c); /// @returns a pointer to the value if the given class is known to be a constant, /// and a nullptr otherwise. u256 const* knownConstant(Id _c); /// Stores a copy of the given AssemblyItem and returns a pointer to the copy that is valid for /// the lifetime of the ExpressionClasses object. AssemblyItem const* storeItem(AssemblyItem const& _item); std::string fullDAGToString(Id _id) const; private: /// Tries to simplify the given expression. /// @returns its class if it possible or Id(-1) otherwise. /// @param _secondRun is set to true for the second run where arguments of commutative expressions are reversed Id tryToSimplify(Expression const& _expr, bool _secondRun = false); /// Rebuilds an expression from a (matched) pattern. Id rebuildExpression(ExpressionTemplate const& _template); std::vector>> createRules() const; /// Expression equivalence class representatives - we only store one item of an equivalence. std::vector m_representatives; /// All expression ever encountered. std::set m_expressions; std::vector> m_spareAssemblyItems; }; } }