/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see .
*/
/** @file Assembly.cpp
* @author Gav Wood
* @date 2014
*/
#include "Assembly.h"
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
using namespace dev;
using namespace dev::eth;
void Assembly::append(Assembly const& _a)
{
auto newDeposit = m_deposit + _a.deposit();
for (AssemblyItem i: _a.m_items)
{
switch (i.type())
{
case Tag:
case PushTag:
i.setData(i.data() + m_usedTags);
break;
case PushSub:
case PushSubSize:
i.setData(i.data() + m_subs.size());
break;
default:
break;
}
append(i);
}
m_deposit = newDeposit;
m_usedTags += _a.m_usedTags;
// This does not transfer the names of named tags on purpose. The tags themselves are
// transferred, but their names are only available inside the assembly.
for (auto const& i: _a.m_data)
m_data.insert(i);
for (auto const& i: _a.m_strings)
m_strings.insert(i);
m_subs += _a.m_subs;
for (auto const& lib: _a.m_libraries)
m_libraries.insert(lib);
}
void Assembly::append(Assembly const& _a, int _deposit)
{
assertThrow(_deposit <= _a.m_deposit, InvalidDeposit, "");
append(_a);
while (_deposit++ < _a.m_deposit)
append(Instruction::POP);
}
AssemblyItem const& Assembly::append(AssemblyItem const& _i)
{
assertThrow(m_deposit >= 0, AssemblyException, "Stack underflow.");
m_deposit += _i.deposit();
m_items.push_back(_i);
if (m_items.back().location().isEmpty() && !m_currentSourceLocation.isEmpty())
m_items.back().setLocation(m_currentSourceLocation);
return back();
}
void Assembly::injectStart(AssemblyItem const& _i)
{
m_items.insert(m_items.begin(), _i);
}
unsigned Assembly::bytesRequired(unsigned subTagSize) const
{
for (unsigned tagSize = subTagSize; true; ++tagSize)
{
unsigned ret = 1;
for (auto const& i: m_data)
ret += i.second.size();
for (AssemblyItem const& i: m_items)
ret += i.bytesRequired(tagSize);
if (dev::bytesRequired(ret) <= tagSize)
return ret;
}
}
namespace
{
string locationFromSources(StringMap const& _sourceCodes, SourceLocation const& _location)
{
if (_location.isEmpty() || _sourceCodes.empty() || _location.start >= _location.end || _location.start < 0)
return "";
auto it = _sourceCodes.find(*_location.sourceName);
if (it == _sourceCodes.end())
return "";
string const& source = it->second;
if (size_t(_location.start) >= source.size())
return "";
string cut = source.substr(_location.start, _location.end - _location.start);
auto newLinePos = cut.find_first_of("\n");
if (newLinePos != string::npos)
cut = cut.substr(0, newLinePos) + "...";
return cut;
}
class Functionalizer
{
public:
Functionalizer (ostream& _out, string const& _prefix, StringMap const& _sourceCodes):
m_out(_out), m_prefix(_prefix), m_sourceCodes(_sourceCodes)
{}
void feed(AssemblyItem const& _item)
{
if (!_item.location().isEmpty() && _item.location() != m_location)
{
flush();
m_location = _item.location();
printLocation();
}
if (!(
_item.canBeFunctional() &&
_item.returnValues() <= 1 &&
_item.arguments() <= int(m_pending.size())
))
{
flush();
m_out << m_prefix << (_item.type() == Tag ? "" : " ") << _item.toAssemblyText() << endl;
return;
}
string expression = _item.toAssemblyText();
if (_item.arguments() > 0)
{
expression += "(";
for (int i = 0; i < _item.arguments(); ++i)
{
expression += m_pending.back();
m_pending.pop_back();
if (i + 1 < _item.arguments())
expression += ", ";
}
expression += ")";
}
m_pending.push_back(expression);
if (_item.returnValues() != 1)
flush();
}
void flush()
{
for (string const& expression: m_pending)
m_out << m_prefix << " " << expression << endl;
m_pending.clear();
}
void printLocation()
{
if (!m_location.sourceName && m_location.isEmpty())
return;
m_out << m_prefix << " /*";
if (m_location.sourceName)
m_out << " \"" + *m_location.sourceName + "\"";
if (!m_location.isEmpty())
m_out << ":" << to_string(m_location.start) + ":" + to_string(m_location.end);
m_out << " " << locationFromSources(m_sourceCodes, m_location);
m_out << " */" << endl;
}
private:
strings m_pending;
SourceLocation m_location;
ostream& m_out;
string const& m_prefix;
StringMap const& m_sourceCodes;
};
}
void Assembly::assemblyStream(ostream& _out, string const& _prefix, StringMap const& _sourceCodes) const
{
Functionalizer f(_out, _prefix, _sourceCodes);
for (auto const& i: m_items)
f.feed(i);
f.flush();
if (!m_data.empty() || !m_subs.empty())
{
_out << _prefix << "stop" << endl;
for (auto const& i: m_data)
if (u256(i.first) >= m_subs.size())
_out << _prefix << "data_" << toHex(u256(i.first)) << " " << toHex(i.second) << endl;
for (size_t i = 0; i < m_subs.size(); ++i)
{
_out << endl << _prefix << "sub_" << i << ": assembly {\n";
m_subs[i]->assemblyStream(_out, _prefix + " ", _sourceCodes);
_out << _prefix << "}" << endl;
}
}
if (m_auxiliaryData.size() > 0)
_out << endl << _prefix << "auxdata: 0x" << toHex(m_auxiliaryData) << endl;
}
string Assembly::assemblyString(StringMap const& _sourceCodes) const
{
ostringstream tmp;
assemblyStream(tmp, "", _sourceCodes);
return tmp.str();
}
Json::Value Assembly::createJsonValue(string _name, int _begin, int _end, string _value, string _jumpType)
{
Json::Value value;
value["name"] = _name;
value["begin"] = _begin;
value["end"] = _end;
if (!_value.empty())
value["value"] = _value;
if (!_jumpType.empty())
value["jumpType"] = _jumpType;
return value;
}
string Assembly::toStringInHex(u256 _value)
{
std::stringstream hexStr;
hexStr << hex << _value;
return hexStr.str();
}
Json::Value Assembly::assemblyJSON(StringMap const& _sourceCodes) const
{
Json::Value root;
Json::Value& collection = root[".code"] = Json::arrayValue;
for (AssemblyItem const& i: m_items)
{
switch (i.type())
{
case Operation:
collection.append(
createJsonValue(instructionInfo(i.instruction()).name, i.location().start, i.location().end, i.getJumpTypeAsString()));
break;
case Push:
collection.append(
createJsonValue("PUSH", i.location().start, i.location().end, toStringInHex(i.data()), i.getJumpTypeAsString()));
break;
case PushString:
collection.append(
createJsonValue("PUSH tag", i.location().start, i.location().end, m_strings.at((h256)i.data())));
break;
case PushTag:
if (i.data() == 0)
collection.append(
createJsonValue("PUSH [ErrorTag]", i.location().start, i.location().end, ""));
else
collection.append(
createJsonValue("PUSH [tag]", i.location().start, i.location().end, dev::toString(i.data())));
break;
case PushSub:
collection.append(
createJsonValue("PUSH [$]", i.location().start, i.location().end, dev::toString(h256(i.data()))));
break;
case PushSubSize:
collection.append(
createJsonValue("PUSH #[$]", i.location().start, i.location().end, dev::toString(h256(i.data()))));
break;
case PushProgramSize:
collection.append(
createJsonValue("PUSHSIZE", i.location().start, i.location().end));
break;
case PushLibraryAddress:
collection.append(
createJsonValue("PUSHLIB", i.location().start, i.location().end, m_libraries.at(h256(i.data())))
);
break;
case PushDeployTimeAddress:
collection.append(
createJsonValue("PUSHDEPLOYADDRESS", i.location().start, i.location().end)
);
break;
case Tag:
collection.append(
createJsonValue("tag", i.location().start, i.location().end, dev::toString(i.data())));
collection.append(
createJsonValue("JUMPDEST", i.location().start, i.location().end));
break;
case PushData:
collection.append(createJsonValue("PUSH data", i.location().start, i.location().end, toStringInHex(i.data())));
break;
default:
BOOST_THROW_EXCEPTION(InvalidOpcode());
}
}
if (!m_data.empty() || !m_subs.empty())
{
Json::Value& data = root[".data"] = Json::objectValue;
for (auto const& i: m_data)
if (u256(i.first) >= m_subs.size())
data[toStringInHex((u256)i.first)] = toHex(i.second);
for (size_t i = 0; i < m_subs.size(); ++i)
{
std::stringstream hexStr;
hexStr << hex << i;
data[hexStr.str()] = m_subs[i]->assemblyJSON(_sourceCodes);
}
}
if (m_auxiliaryData.size() > 0)
root[".auxdata"] = toHex(m_auxiliaryData);
return root;
}
AssemblyItem Assembly::namedTag(string const& _name)
{
assertThrow(!_name.empty(), AssemblyException, "Empty named tag.");
if (!m_namedTags.count(_name))
m_namedTags[_name] = size_t(newTag().data());
return AssemblyItem(Tag, m_namedTags.at(_name));
}
AssemblyItem Assembly::newPushLibraryAddress(string const& _identifier)
{
h256 h(dev::keccak256(_identifier));
m_libraries[h] = _identifier;
return AssemblyItem(PushLibraryAddress, h);
}
Assembly& Assembly::optimise(bool _enable, EVMVersion _evmVersion, bool _isCreation, size_t _runs)
{
OptimiserSettings settings;
settings.isCreation = _isCreation;
settings.runJumpdestRemover = true;
settings.runPeephole = true;
if (_enable)
{
settings.runDeduplicate = true;
settings.runCSE = true;
settings.runConstantOptimiser = true;
}
settings.evmVersion = _evmVersion;
settings.expectedExecutionsPerDeployment = _runs;
optimise(settings);
return *this;
}
Assembly& Assembly::optimise(OptimiserSettings const& _settings)
{
optimiseInternal(_settings, {});
return *this;
}
map Assembly::optimiseInternal(
OptimiserSettings const& _settings,
std::set const& _tagsReferencedFromOutside
)
{
// Run optimisation for sub-assemblies.
for (size_t subId = 0; subId < m_subs.size(); ++subId)
{
OptimiserSettings settings = _settings;
// Disable creation mode for sub-assemblies.
settings.isCreation = false;
map subTagReplacements = m_subs[subId]->optimiseInternal(
settings,
JumpdestRemover::referencedTags(m_items, subId)
);
// Apply the replacements (can be empty).
BlockDeduplicator::applyTagReplacement(m_items, subTagReplacements, subId);
}
map tagReplacements;
// Iterate until no new optimisation possibilities are found.
for (unsigned count = 1; count > 0;)
{
count = 0;
if (_settings.runJumpdestRemover)
{
JumpdestRemover jumpdestOpt(m_items);
if (jumpdestOpt.optimise(_tagsReferencedFromOutside))
count++;
}
if (_settings.runPeephole)
{
PeepholeOptimiser peepOpt(m_items);
while (peepOpt.optimise())
{
count++;
assertThrow(count < 64000, OptimizerException, "Peephole optimizer seems to be stuck.");
}
}
// This only modifies PushTags, we have to run again to actually remove code.
if (_settings.runDeduplicate)
{
BlockDeduplicator dedup(m_items);
if (dedup.deduplicate())
{
tagReplacements.insert(dedup.replacedTags().begin(), dedup.replacedTags().end());
count++;
}
}
if (_settings.runCSE)
{
// Control flow graph optimization has been here before but is disabled because it
// assumes we only jump to tags that are pushed. This is not the case anymore with
// function types that can be stored in storage.
AssemblyItems optimisedItems;
bool usesMSize = (find(m_items.begin(), m_items.end(), AssemblyItem(Instruction::MSIZE)) != m_items.end());
auto iter = m_items.begin();
while (iter != m_items.end())
{
KnownState emptyState;
CommonSubexpressionEliminator eliminator(emptyState);
auto orig = iter;
iter = eliminator.feedItems(iter, m_items.end(), usesMSize);
bool shouldReplace = false;
AssemblyItems optimisedChunk;
try
{
optimisedChunk = eliminator.getOptimizedItems();
shouldReplace = (optimisedChunk.size() < size_t(iter - orig));
}
catch (StackTooDeepException const&)
{
// This might happen if the opcode reconstruction is not as efficient
// as the hand-crafted code.
}
catch (ItemNotAvailableException const&)
{
// This might happen if e.g. associativity and commutativity rules
// reorganise the expression tree, but not all leaves are available.
}
if (shouldReplace)
{
count++;
optimisedItems += optimisedChunk;
}
else
copy(orig, iter, back_inserter(optimisedItems));
}
if (optimisedItems.size() < m_items.size())
{
m_items = move(optimisedItems);
count++;
}
}
}
if (_settings.runConstantOptimiser)
ConstantOptimisationMethod::optimiseConstants(
_settings.isCreation,
_settings.isCreation ? 1 : _settings.expectedExecutionsPerDeployment,
_settings.evmVersion,
*this,
m_items
);
return tagReplacements;
}
LinkerObject const& Assembly::assemble() const
{
if (!m_assembledObject.bytecode.empty())
return m_assembledObject;
size_t subTagSize = 1;
for (auto const& sub: m_subs)
{
sub->assemble();
for (size_t tagPos: sub->m_tagPositionsInBytecode)
if (tagPos != size_t(-1) && tagPos > subTagSize)
subTagSize = tagPos;
}
LinkerObject& ret = m_assembledObject;
size_t bytesRequiredForCode = bytesRequired(subTagSize);
m_tagPositionsInBytecode = vector(m_usedTags, -1);
map> tagRef;
multimap dataRef;
multimap subRef;
vector sizeRef; ///< Pointers to code locations where the size of the program is inserted
unsigned bytesPerTag = dev::bytesRequired(bytesRequiredForCode);
byte tagPush = (byte)Instruction::PUSH1 - 1 + bytesPerTag;
unsigned bytesRequiredIncludingData = bytesRequiredForCode + 1 + m_auxiliaryData.size();
for (auto const& sub: m_subs)
bytesRequiredIncludingData += sub->assemble().bytecode.size();
unsigned bytesPerDataRef = dev::bytesRequired(bytesRequiredIncludingData);
byte dataRefPush = (byte)Instruction::PUSH1 - 1 + bytesPerDataRef;
ret.bytecode.reserve(bytesRequiredIncludingData);
for (AssemblyItem const& i: m_items)
{
// store position of the invalid jump destination
if (i.type() != Tag && m_tagPositionsInBytecode[0] == size_t(-1))
m_tagPositionsInBytecode[0] = ret.bytecode.size();
switch (i.type())
{
case Operation:
ret.bytecode.push_back((byte)i.instruction());
break;
case PushString:
{
ret.bytecode.push_back((byte)Instruction::PUSH32);
unsigned ii = 0;
for (auto j: m_strings.at((h256)i.data()))
if (++ii > 32)
break;
else
ret.bytecode.push_back((byte)j);
while (ii++ < 32)
ret.bytecode.push_back(0);
break;
}
case Push:
{
byte b = max(1, dev::bytesRequired(i.data()));
ret.bytecode.push_back((byte)Instruction::PUSH1 - 1 + b);
ret.bytecode.resize(ret.bytecode.size() + b);
bytesRef byr(&ret.bytecode.back() + 1 - b, b);
toBigEndian(i.data(), byr);
break;
}
case PushTag:
{
ret.bytecode.push_back(tagPush);
tagRef[ret.bytecode.size()] = i.splitForeignPushTag();
ret.bytecode.resize(ret.bytecode.size() + bytesPerTag);
break;
}
case PushData:
ret.bytecode.push_back(dataRefPush);
dataRef.insert(make_pair((h256)i.data(), ret.bytecode.size()));
ret.bytecode.resize(ret.bytecode.size() + bytesPerDataRef);
break;
case PushSub:
ret.bytecode.push_back(dataRefPush);
subRef.insert(make_pair(size_t(i.data()), ret.bytecode.size()));
ret.bytecode.resize(ret.bytecode.size() + bytesPerDataRef);
break;
case PushSubSize:
{
auto s = m_subs.at(size_t(i.data()))->assemble().bytecode.size();
i.setPushedValue(u256(s));
byte b = max(1, dev::bytesRequired(s));
ret.bytecode.push_back((byte)Instruction::PUSH1 - 1 + b);
ret.bytecode.resize(ret.bytecode.size() + b);
bytesRef byr(&ret.bytecode.back() + 1 - b, b);
toBigEndian(s, byr);
break;
}
case PushProgramSize:
{
ret.bytecode.push_back(dataRefPush);
sizeRef.push_back(ret.bytecode.size());
ret.bytecode.resize(ret.bytecode.size() + bytesPerDataRef);
break;
}
case PushLibraryAddress:
ret.bytecode.push_back(byte(Instruction::PUSH20));
ret.linkReferences[ret.bytecode.size()] = m_libraries.at(i.data());
ret.bytecode.resize(ret.bytecode.size() + 20);
break;
case PushDeployTimeAddress:
ret.bytecode.push_back(byte(Instruction::PUSH20));
ret.bytecode.resize(ret.bytecode.size() + 20);
break;
case Tag:
assertThrow(i.data() != 0, AssemblyException, "Invalid tag position.");
assertThrow(i.splitForeignPushTag().first == size_t(-1), AssemblyException, "Foreign tag.");
assertThrow(ret.bytecode.size() < 0xffffffffL, AssemblyException, "Tag too large.");
assertThrow(m_tagPositionsInBytecode[size_t(i.data())] == size_t(-1), AssemblyException, "Duplicate tag position.");
m_tagPositionsInBytecode[size_t(i.data())] = ret.bytecode.size();
ret.bytecode.push_back((byte)Instruction::JUMPDEST);
break;
default:
BOOST_THROW_EXCEPTION(InvalidOpcode());
}
}
if (!m_subs.empty() || !m_data.empty() || !m_auxiliaryData.empty())
// Append an INVALID here to help tests find miscompilation.
ret.bytecode.push_back(byte(Instruction::INVALID));
for (size_t i = 0; i < m_subs.size(); ++i)
{
auto references = subRef.equal_range(i);
if (references.first == references.second)
continue;
for (auto ref = references.first; ref != references.second; ++ref)
{
bytesRef r(ret.bytecode.data() + ref->second, bytesPerDataRef);
toBigEndian(ret.bytecode.size(), r);
}
ret.append(m_subs[i]->assemble());
}
for (auto const& i: tagRef)
{
size_t subId;
size_t tagId;
tie(subId, tagId) = i.second;
assertThrow(subId == size_t(-1) || subId < m_subs.size(), AssemblyException, "Invalid sub id");
std::vector const& tagPositions =
subId == size_t(-1) ?
m_tagPositionsInBytecode :
m_subs[subId]->m_tagPositionsInBytecode;
assertThrow(tagId < tagPositions.size(), AssemblyException, "Reference to non-existing tag.");
size_t pos = tagPositions[tagId];
assertThrow(pos != size_t(-1), AssemblyException, "Reference to tag without position.");
assertThrow(dev::bytesRequired(pos) <= bytesPerTag, AssemblyException, "Tag too large for reserved space.");
bytesRef r(ret.bytecode.data() + i.first, bytesPerTag);
toBigEndian(pos, r);
}
for (auto const& dataItem: m_data)
{
auto references = dataRef.equal_range(dataItem.first);
if (references.first == references.second)
continue;
for (auto ref = references.first; ref != references.second; ++ref)
{
bytesRef r(ret.bytecode.data() + ref->second, bytesPerDataRef);
toBigEndian(ret.bytecode.size(), r);
}
ret.bytecode += dataItem.second;
}
ret.bytecode += m_auxiliaryData;
for (unsigned pos: sizeRef)
{
bytesRef r(ret.bytecode.data() + pos, bytesPerDataRef);
toBigEndian(ret.bytecode.size(), r);
}
return ret;
}