/* This file is part of cpp-ethereum. cpp-ethereum is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. cpp-ethereum is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with cpp-ethereum. If not, see . */ /** * @author Christian * @date 2014 * Solidity abstract syntax tree. */ #include #include #include #include namespace dev { namespace solidity { void ContractDefinition::accept(ASTVisitor& _visitor) { if (_visitor.visit(*this)) { listAccept(m_definedStructs, _visitor); listAccept(m_stateVariables, _visitor); listAccept(m_definedFunctions, _visitor); } _visitor.endVisit(*this); } void StructDefinition::accept(ASTVisitor& _visitor) { if (_visitor.visit(*this)) { listAccept(m_members, _visitor); } _visitor.endVisit(*this); } void ParameterList::accept(ASTVisitor& _visitor) { if (_visitor.visit(*this)) { listAccept(m_parameters, _visitor); } _visitor.endVisit(*this); } void FunctionDefinition::accept(ASTVisitor& _visitor) { if (_visitor.visit(*this)) { m_parameters->accept(_visitor); if (m_returnParameters) m_returnParameters->accept(_visitor); m_body->accept(_visitor); } _visitor.endVisit(*this); } void VariableDeclaration::accept(ASTVisitor& _visitor) { if (_visitor.visit(*this)) { if (m_typeName) m_typeName->accept(_visitor); } _visitor.endVisit(*this); } void TypeName::accept(ASTVisitor& _visitor) { _visitor.visit(*this); _visitor.endVisit(*this); } void ElementaryTypeName::accept(ASTVisitor& _visitor) { _visitor.visit(*this); _visitor.endVisit(*this); } void UserDefinedTypeName::accept(ASTVisitor& _visitor) { _visitor.visit(*this); _visitor.endVisit(*this); } void Mapping::accept(ASTVisitor& _visitor) { if (_visitor.visit(*this)) { m_keyType->accept(_visitor); m_valueType->accept(_visitor); } _visitor.endVisit(*this); } void Statement::accept(ASTVisitor& _visitor) { _visitor.visit(*this); _visitor.endVisit(*this); } void Block::accept(ASTVisitor& _visitor) { if (_visitor.visit(*this)) { listAccept(m_statements, _visitor); } _visitor.endVisit(*this); } void IfStatement::accept(ASTVisitor& _visitor) { if (_visitor.visit(*this)) { m_condition->accept(_visitor); m_trueBody->accept(_visitor); if (m_falseBody) m_falseBody->accept(_visitor); } _visitor.endVisit(*this); } void BreakableStatement::accept(ASTVisitor& _visitor) { _visitor.visit(*this); _visitor.endVisit(*this); } void WhileStatement::accept(ASTVisitor& _visitor) { if (_visitor.visit(*this)) { m_condition->accept(_visitor); m_body->accept(_visitor); } _visitor.endVisit(*this); } void Continue::accept(ASTVisitor& _visitor) { _visitor.visit(*this); _visitor.endVisit(*this); } void Break::accept(ASTVisitor& _visitor) { _visitor.visit(*this); _visitor.endVisit(*this); } void Return::accept(ASTVisitor& _visitor) { if (_visitor.visit(*this)) { if (m_expression) m_expression->accept(_visitor); } _visitor.endVisit(*this); } void VariableDefinition::accept(ASTVisitor& _visitor) { if (_visitor.visit(*this)) { m_variable->accept(_visitor); if (m_value) m_value->accept(_visitor); } _visitor.endVisit(*this); } void Assignment::accept(ASTVisitor& _visitor) { if (_visitor.visit(*this)) { m_leftHandSide->accept(_visitor); m_rightHandSide->accept(_visitor); } _visitor.endVisit(*this); } void UnaryOperation::accept(ASTVisitor& _visitor) { if (_visitor.visit(*this)) { m_subExpression->accept(_visitor); } _visitor.endVisit(*this); } void BinaryOperation::accept(ASTVisitor& _visitor) { if (_visitor.visit(*this)) { m_left->accept(_visitor); m_right->accept(_visitor); } _visitor.endVisit(*this); } void FunctionCall::accept(ASTVisitor& _visitor) { if (_visitor.visit(*this)) { m_expression->accept(_visitor); listAccept(m_arguments, _visitor); } _visitor.endVisit(*this); } void MemberAccess::accept(ASTVisitor& _visitor) { if (_visitor.visit(*this)) { m_expression->accept(_visitor); } _visitor.endVisit(*this); } void IndexAccess::accept(ASTVisitor& _visitor) { if (_visitor.visit(*this)) { m_base->accept(_visitor); m_index->accept(_visitor); } _visitor.endVisit(*this); } void Identifier::accept(ASTVisitor& _visitor) { _visitor.visit(*this); _visitor.endVisit(*this); } void ElementaryTypeNameExpression::accept(ASTVisitor& _visitor) { _visitor.visit(*this); _visitor.endVisit(*this); } void Literal::accept(ASTVisitor& _visitor) { _visitor.visit(*this); _visitor.endVisit(*this); } void Statement::expectType(Expression& _expression, const Type& _expectedType) { if (!_expression.checkTypeRequirements()->isImplicitlyConvertibleTo(_expectedType)) BOOST_THROW_EXCEPTION(TypeError() << errinfo_comment("Type not implicitly convertible " "to expected type.")); //@todo provide more information to the exception } ptr Block::checkTypeRequirements() { for (ptr const& statement : m_statements) statement->checkTypeRequirements(); return ptr(); } ptr IfStatement::checkTypeRequirements() { expectType(*m_condition, BoolType()); m_trueBody->checkTypeRequirements(); if (m_falseBody) m_falseBody->checkTypeRequirements(); return ptr(); } ptr WhileStatement::checkTypeRequirements() { expectType(*m_condition, BoolType()); m_body->checkTypeRequirements(); return ptr(); } ptr Continue::checkTypeRequirements() { return ptr(); } ptr Break::checkTypeRequirements() { return ptr(); } ptr Return::checkTypeRequirements() { BOOST_ASSERT(m_returnParameters != nullptr); if (m_returnParameters->getParameters().size() != 1) BOOST_THROW_EXCEPTION(TypeError() << errinfo_comment("Different number of arguments in " "return statement than in returns " "declaration.")); // this could later be changed such that the paramaters type is an anonymous struct type, // but for now, we only allow one return parameter expectType(*m_expression, *m_returnParameters->getParameters().front()->getType()); return ptr(); } ptr VariableDefinition::checkTypeRequirements() { // Variables can be declared without type (with "var"), in which case the first assignment // setsthe type. // Note that assignments before the first declaration are legal because of the special scoping // rules inherited from JavaScript. if (m_value) { if (m_variable->getType()) { expectType(*m_value, *m_variable->getType()); } else { // no type declared and no previous assignment, infer the type m_variable->setType(m_value->checkTypeRequirements()); } } return ptr(); } ptr Assignment::checkTypeRequirements() { //@todo lefthandside actually has to be assignable // add a feature to the type system to check that expectType(*m_rightHandSide, *m_leftHandSide->checkTypeRequirements()); m_type = m_leftHandSide->getType(); if (m_assigmentOperator != Token::ASSIGN) { // complex assignment if (!m_type->acceptsBinaryOperator(Token::AssignmentToBinaryOp(m_assigmentOperator))) BOOST_THROW_EXCEPTION(TypeError() << errinfo_comment("Operator not compatible with type.")); } return m_type; } ptr UnaryOperation::checkTypeRequirements() { // INC, DEC, NOT, BIT_NOT, DELETE m_type = m_subExpression->checkTypeRequirements(); if (m_type->acceptsUnaryOperator(m_operator)) BOOST_THROW_EXCEPTION(TypeError() << errinfo_comment("Unary operator not compatible with type.")); return m_type; } ptr BinaryOperation::checkTypeRequirements() { m_right->checkTypeRequirements(); m_left->checkTypeRequirements(); if (m_right->getType()->isImplicitlyConvertibleTo(*m_left->getType())) m_commonType = m_left->getType(); else if (m_left->getType()->isImplicitlyConvertibleTo(*m_right->getType())) m_commonType = m_right->getType(); else BOOST_THROW_EXCEPTION(TypeError() << errinfo_comment("No common type found in binary operation.")); if (Token::IsCompareOp(m_operator)) { m_type = std::make_shared(); } else { BOOST_ASSERT(Token::IsBinaryOp(m_operator)); m_type = m_commonType; if (!m_commonType->acceptsBinaryOperator(m_operator)) BOOST_THROW_EXCEPTION(TypeError() << errinfo_comment("Operator not compatible with type.")); } return m_type; } ptr FunctionCall::checkTypeRequirements() { m_expression->checkTypeRequirements(); for (ptr const& argument : m_arguments) argument->checkTypeRequirements(); ptr expressionType = m_expression->getType(); Type::Category const category = expressionType->getCategory(); if (category == Type::Category::TYPE) { TypeType* type = dynamic_cast(expressionType.get()); BOOST_ASSERT(type != nullptr); //@todo for structs, we have to check the number of arguments to be equal to the // number of non-mapping members if (m_arguments.size() != 1) BOOST_THROW_EXCEPTION(TypeError() << errinfo_comment("More than one argument for " "explicit type conersion.")); if (!m_arguments.front()->getType()->isExplicitlyConvertibleTo(*type->getActualType())) BOOST_THROW_EXCEPTION(TypeError() << errinfo_comment("Explicit type conversion not " "allowed.")); m_type = type->getActualType(); } else if (category == Type::Category::FUNCTION) { //@todo would be nice to create a struct type from the arguments // and then ask if that is implicitly convertible to the struct represented by the // function parameters FunctionType* function = dynamic_cast(expressionType.get()); BOOST_ASSERT(function != nullptr); FunctionDefinition const& fun = function->getFunction(); vecptr const& parameters = fun.getParameters(); if (parameters.size() != m_arguments.size()) BOOST_THROW_EXCEPTION(TypeError() << errinfo_comment("Wrong argument count for " "function call.")); for (size_t i = 0; i < m_arguments.size(); ++i) { if (!m_arguments[i]->getType()->isImplicitlyConvertibleTo(*parameters[i]->getType())) BOOST_THROW_EXCEPTION(TypeError() << errinfo_comment("Invalid type for argument in " "function call.")); } // @todo actually the return type should be an anonymous struct, // but we change it to the type of the first return value until we have structs if (fun.getReturnParameterList()->getParameters().empty()) m_type = std::make_shared(); else m_type = fun.getReturnParameterList()->getParameters().front()->getType(); } else { BOOST_THROW_EXCEPTION(TypeError() << errinfo_comment("Type does not support invocation.")); } return m_type; } ptr MemberAccess::checkTypeRequirements() { BOOST_ASSERT(false); // not yet implemented // m_type = ; return m_type; } ptr IndexAccess::checkTypeRequirements() { BOOST_ASSERT(false); // not yet implemented // m_type = ; return m_type; } ptr Identifier::checkTypeRequirements() { BOOST_ASSERT(m_referencedDeclaration != nullptr); //@todo these dynamic casts here are not really nice... // is i useful to have an AST visitor here? // or can this already be done in NameAndTypeResolver? // the only problem we get there is that in // var x; // x = 2; // var y = x; // the type of x is not yet determined. VariableDeclaration* variable = dynamic_cast(m_referencedDeclaration); if (variable != nullptr) { if (variable->getType().get() == nullptr) BOOST_THROW_EXCEPTION(TypeError() << errinfo_comment("Variable referenced before type " "could be determined.")); m_type = variable->getType(); return m_type; } //@todo can we unify these with TypeName::toType()? StructDefinition* structDef = dynamic_cast(m_referencedDeclaration); if (structDef != nullptr) { // note that we do not have a struct type here m_type = std::make_shared(std::make_shared(*structDef)); return m_type; } FunctionDefinition* functionDef = dynamic_cast(m_referencedDeclaration); if (functionDef != nullptr) { // a function reference is not a TypeType, because calling a TypeType converts to the type. // Calling a function (e.g. function(12), otherContract.function(34)) does not do a type // conversion. m_type = std::make_shared(*functionDef); return m_type; } ContractDefinition* contractDef = dynamic_cast(m_referencedDeclaration); if (contractDef != nullptr) { m_type = std::make_shared(std::make_shared(*contractDef)); return m_type; } BOOST_ASSERT(false); // declaration reference of unknown/forbidden type return m_type; } ptr ElementaryTypeNameExpression::checkTypeRequirements() { m_type = std::make_shared(Type::fromElementaryTypeName(m_typeToken)); return m_type; } ptr Literal::checkTypeRequirements() { m_type = Type::forLiteral(*this); return m_type; } } }