aboutsummaryrefslogtreecommitdiffstats
path: root/libsolidity/codegen/ExpressionCompiler.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'libsolidity/codegen/ExpressionCompiler.cpp')
-rw-r--r--libsolidity/codegen/ExpressionCompiler.cpp33
1 files changed, 29 insertions, 4 deletions
diff --git a/libsolidity/codegen/ExpressionCompiler.cpp b/libsolidity/codegen/ExpressionCompiler.cpp
index 93d440c8..0470c3ec 100644
--- a/libsolidity/codegen/ExpressionCompiler.cpp
+++ b/libsolidity/codegen/ExpressionCompiler.cpp
@@ -1737,11 +1737,36 @@ void ExpressionCompiler::appendShiftOperatorCode(Token::Value _operator, Type co
m_context << u256(2) << Instruction::EXP << Instruction::MUL;
break;
case Token::SAR:
- // NOTE: SAR rounds differently than SDIV
- if (m_context.evmVersion().hasBitwiseShifting() && !c_valueSigned)
- m_context << Instruction::SHR;
+ if (m_context.evmVersion().hasBitwiseShifting())
+ m_context << (c_valueSigned ? Instruction::SAR : Instruction::SHR);
else
- m_context << u256(2) << Instruction::EXP << Instruction::SWAP1 << (c_valueSigned ? Instruction::SDIV : Instruction::DIV);
+ {
+ if (c_valueSigned)
+ // In the following assembly snippet, xor_mask will be zero, if value_to_shift is positive.
+ // Therefor xor'ing with xor_mask is the identity and the computation reduces to
+ // div(value_to_shift, exp(2, shift_amount)), which is correct, since for positive values
+ // arithmetic right shift is dividing by a power of two (which, as a bitwise operation, results
+ // in discarding bits on the right and filling with zeros from the left).
+ // For negative values arithmetic right shift, viewed as a bitwise operation, discards bits to the
+ // right and fills in ones from the left. This is achieved as follows:
+ // If value_to_shift is negative, then xor_mask will have all bits set, so xor'ing with xor_mask
+ // will flip all bits. First all bits in value_to_shift are flipped. As for the positive case,
+ // dividing by a power of two using integer arithmetic results in discarding bits to the right
+ // and filling with zeros from the left. Flipping all bits in the result again, turns all zeros
+ // on the left to ones and restores the non-discarded, shifted bits to their original value (they
+ // have now been flipped twice). In summary we now have discarded bits to the right and filled with
+ // ones from the left, i.e. we have performed an arithmetic right shift.
+ m_context.appendInlineAssembly(R"({
+ let xor_mask := sub(0, slt(value_to_shift, 0))
+ value_to_shift := xor(div(xor(value_to_shift, xor_mask), exp(2, shift_amount)), xor_mask)
+ })", {"value_to_shift", "shift_amount"});
+ else
+ m_context.appendInlineAssembly(R"({
+ value_to_shift := div(value_to_shift, exp(2, shift_amount))
+ })", {"value_to_shift", "shift_amount"});
+ m_context << Instruction::POP;
+
+ }
break;
case Token::SHR:
default: