aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--Changelog.md1
-rw-r--r--docs/index.rst2
-rw-r--r--docs/types.rst13
-rw-r--r--docs/yul.rst (renamed from docs/julia.rst)45
-rw-r--r--libsolidity/ast/Types.cpp11
-rw-r--r--libsolidity/codegen/ExpressionCompiler.cpp33
-rw-r--r--test/libsolidity/SolidityEndToEndTest.cpp172
-rw-r--r--test/libsolidity/SyntaxTest.cpp13
-rw-r--r--test/tools/isoltest.cpp27
9 files changed, 199 insertions, 118 deletions
diff --git a/Changelog.md b/Changelog.md
index 0050f9a6..d5b440b2 100644
--- a/Changelog.md
+++ b/Changelog.md
@@ -8,6 +8,7 @@ Breaking Changes:
* Commandline interface: Require ``-`` if standard input is used as source.
* General: New keywords: ``calldata``
* General: ``continue`` in a ``do...while`` loop jumps to the condition (it used to jump to the loop body). Warning: this may silently change the semantics of existing code.
+ * General: Signed right shift uses proper arithmetic shift, i.e. rounding towards negative infinity. Warning: this may silently change the semantics of existing code!
* Introduce ``emit`` as a keyword instead of parsing it as identifier.
* Type Checker: Disallow arithmetic operations for Boolean variables.
* Disallow trailing dots that are not followed by a number.
diff --git a/docs/index.rst b/docs/index.rst
index 80b0d6e7..a57b93e4 100644
--- a/docs/index.rst
+++ b/docs/index.rst
@@ -169,7 +169,7 @@ Contents
using-the-compiler.rst
metadata.rst
abi-spec.rst
- julia.rst
+ yul.rst
style-guide.rst
common-patterns.rst
bugs.rst
diff --git a/docs/types.rst b/docs/types.rst
index 08b74241..009896d5 100644
--- a/docs/types.rst
+++ b/docs/types.rst
@@ -60,15 +60,14 @@ operators are :ref:`literals<rational_literals>` (or literal expressions).
Division by zero and modulus with zero throws a runtime exception.
The result of a shift operation is the type of the left operand. The
-expression ``x << y`` is equivalent to ``x * 2**y``, and ``x >> y`` is
-equivalent to ``x / 2**y``. This means that shifting negative numbers
-sign extends. Shifting by a negative amount throws a runtime exception.
+expression ``x << y`` is equivalent to ``x * 2**y``, and, for positive integers,
+``x >> y`` is equivalent to ``x / 2**y``. For negative ``x``, ``x >> y``
+is equivalent to dividing by a power of ``2`` while rounding down (towards negative infinity).
+Shifting by a negative amount throws a runtime exception.
.. warning::
- The results produced by shift right of negative values of signed integer types is different from those produced
- by other programming languages. In Solidity, shift right maps to division so the shifted negative values
- are going to be rounded towards zero (truncated). In other programming languages the shift right of negative values
- works like division with rounding down (towards negative infinity).
+ Before version ``0.5.0`` a right shift ``x >> y`` for negative ``x`` was equivalent to ``x / 2**y``,
+ i.e. right shifts used rounding towards zero instead of rounding towards negative infinity.
.. index:: ! ufixed, ! fixed, ! fixed point number
diff --git a/docs/julia.rst b/docs/yul.rst
index 91b91df2..4f5ef98f 100644
--- a/docs/julia.rst
+++ b/docs/yul.rst
@@ -1,18 +1,19 @@
-#################################################
-Joyfully Universal Language for (Inline) Assembly
-#################################################
+###
+Yul
+###
-.. _julia:
+.. _yul:
-.. index:: ! assembly, ! asm, ! evmasm, ! julia
+.. index:: ! assembly, ! asm, ! evmasm, ! yul, julia, iulia
-JULIA is an intermediate language that can compile to various different backends
+Yul (previously also called JULIA or IULIA) is an intermediate language that can
+compile to various different backends
(EVM 1.0, EVM 1.5 and eWASM are planned).
Because of that, it is designed to be a usable common denominator of all three
platforms.
It can already be used for "inline assembly" inside Solidity and
-future versions of the Solidity compiler will even use JULIA as intermediate
-language. It should also be easy to build high-level optimizer stages for JULIA.
+future versions of the Solidity compiler will even use Yul as intermediate
+language. It should also be easy to build high-level optimizer stages for Yul.
.. note::
@@ -21,14 +22,14 @@ language. It should also be easy to build high-level optimizer stages for JULIA.
to the EVM opcodes. Please resort to the inline assembly documentation
for details.
-The core components of JULIA are functions, blocks, variables, literals,
+The core components of Yul are functions, blocks, variables, literals,
for-loops, if-statements, switch-statements, expressions and assignments to variables.
-JULIA is typed, both variables and literals must specify the type with postfix
+Yul is typed, both variables and literals must specify the type with postfix
notation. The supported types are ``bool``, ``u8``, ``s8``, ``u32``, ``s32``,
``u64``, ``s64``, ``u128``, ``s128``, ``u256`` and ``s256``.
-JULIA in itself does not even provide operators. If the EVM is targeted,
+Yul in itself does not even provide operators. If the EVM is targeted,
opcodes will be available as built-in functions, but they can be reimplemented
if the backend changes. For a list of mandatory built-in functions, see the section below.
@@ -69,10 +70,10 @@ and ``add`` to be available.
}
}
-Specification of JULIA
-======================
+Specification of Yul
+====================
-JULIA code is described in this chapter. JULIA code is usually placed into a JULIA object, which is described in the following chapter.
+This chapter describes Yul code. It is usually placed inside a Yul object, which is described in the following chapter.
Grammar::
@@ -156,7 +157,7 @@ Literals cannot be larger than the their type. The largest type defined is 256-b
Scoping Rules
-------------
-Scopes in JULIA are tied to Blocks (exceptions are functions and the for loop
+Scopes in Yul are tied to Blocks (exceptions are functions and the for loop
as explained below) and all declarations
(``FunctionDefinition``, ``VariableDeclaration``)
introduce new identifiers into these scopes.
@@ -186,7 +187,7 @@ outside of that function.
Formal Specification
--------------------
-We formally specify JULIA by providing an evaluation function E overloaded
+We formally specify Yul by providing an evaluation function E overloaded
on the various nodes of the AST. Any functions can have side effects, so
E takes two state objects and the AST node and returns two new
state objects and a variable number of other values.
@@ -303,7 +304,7 @@ We will use a destructuring notation for the AST nodes.
Type Conversion Functions
-------------------------
-JULIA has no support for implicit type conversion and therefore functions exist to provide explicit conversion.
+Yul has no support for implicit type conversion and therefore functions exist to provide explicit conversion.
When converting a larger type to a shorter type a runtime exception can occur in case of an overflow.
Truncating conversions are supported between the following types:
@@ -507,7 +508,7 @@ The following functions must be available:
Backends
--------
-Backends or targets are the translators from JULIA to a specific bytecode. Each of the backends can expose functions
+Backends or targets are the translators from Yul to a specific bytecode. Each of the backends can expose functions
prefixed with the name of the backend. We reserve ``evm_`` and ``ewasm_`` prefixes for the two proposed backends.
Backend: EVM
@@ -525,8 +526,8 @@ Backend: eWASM
TBD
-Specification of JULIA Object
-=============================
+Specification of Yul Object
+===========================
Grammar::
@@ -537,9 +538,9 @@ Grammar::
HexLiteral = 'hex' ('"' ([0-9a-fA-F]{2})* '"' | '\'' ([0-9a-fA-F]{2})* '\'')
StringLiteral = '"' ([^"\r\n\\] | '\\' .)* '"'
-Above, ``Block`` refers to ``Block`` in the JULIA code grammar explained in the previous chapter.
+Above, ``Block`` refers to ``Block`` in the Yul code grammar explained in the previous chapter.
-An example JULIA Object is shown below:
+An example Yul Object is shown below:
.. code::
diff --git a/libsolidity/ast/Types.cpp b/libsolidity/ast/Types.cpp
index 1e0565c0..94e04b6a 100644
--- a/libsolidity/ast/Types.cpp
+++ b/libsolidity/ast/Types.cpp
@@ -1084,9 +1084,16 @@ TypePointer RationalNumberType::binaryOperatorResult(Token::Value _operator, Typ
{
uint32_t exponent = other.m_value.numerator().convert_to<uint32_t>();
if (exponent > mostSignificantBit(boost::multiprecision::abs(m_value.numerator())))
- value = 0;
+ value = m_value.numerator() < 0 ? -1 : 0;
else
- value = rational(m_value.numerator() / boost::multiprecision::pow(bigint(2), exponent), 1);
+ {
+ if (m_value.numerator() < 0)
+ // add 1 to the negative value before dividing to get a result that is strictly too large
+ // subtract 1 afterwards to round towards negative infinity
+ value = rational((m_value.numerator() + 1) / boost::multiprecision::pow(bigint(2), exponent) - bigint(1), 1);
+ else
+ value = rational(m_value.numerator() / boost::multiprecision::pow(bigint(2), exponent), 1);
+ }
}
break;
}
diff --git a/libsolidity/codegen/ExpressionCompiler.cpp b/libsolidity/codegen/ExpressionCompiler.cpp
index 93d440c8..0470c3ec 100644
--- a/libsolidity/codegen/ExpressionCompiler.cpp
+++ b/libsolidity/codegen/ExpressionCompiler.cpp
@@ -1737,11 +1737,36 @@ void ExpressionCompiler::appendShiftOperatorCode(Token::Value _operator, Type co
m_context << u256(2) << Instruction::EXP << Instruction::MUL;
break;
case Token::SAR:
- // NOTE: SAR rounds differently than SDIV
- if (m_context.evmVersion().hasBitwiseShifting() && !c_valueSigned)
- m_context << Instruction::SHR;
+ if (m_context.evmVersion().hasBitwiseShifting())
+ m_context << (c_valueSigned ? Instruction::SAR : Instruction::SHR);
else
- m_context << u256(2) << Instruction::EXP << Instruction::SWAP1 << (c_valueSigned ? Instruction::SDIV : Instruction::DIV);
+ {
+ if (c_valueSigned)
+ // In the following assembly snippet, xor_mask will be zero, if value_to_shift is positive.
+ // Therefor xor'ing with xor_mask is the identity and the computation reduces to
+ // div(value_to_shift, exp(2, shift_amount)), which is correct, since for positive values
+ // arithmetic right shift is dividing by a power of two (which, as a bitwise operation, results
+ // in discarding bits on the right and filling with zeros from the left).
+ // For negative values arithmetic right shift, viewed as a bitwise operation, discards bits to the
+ // right and fills in ones from the left. This is achieved as follows:
+ // If value_to_shift is negative, then xor_mask will have all bits set, so xor'ing with xor_mask
+ // will flip all bits. First all bits in value_to_shift are flipped. As for the positive case,
+ // dividing by a power of two using integer arithmetic results in discarding bits to the right
+ // and filling with zeros from the left. Flipping all bits in the result again, turns all zeros
+ // on the left to ones and restores the non-discarded, shifted bits to their original value (they
+ // have now been flipped twice). In summary we now have discarded bits to the right and filled with
+ // ones from the left, i.e. we have performed an arithmetic right shift.
+ m_context.appendInlineAssembly(R"({
+ let xor_mask := sub(0, slt(value_to_shift, 0))
+ value_to_shift := xor(div(xor(value_to_shift, xor_mask), exp(2, shift_amount)), xor_mask)
+ })", {"value_to_shift", "shift_amount"});
+ else
+ m_context.appendInlineAssembly(R"({
+ value_to_shift := div(value_to_shift, exp(2, shift_amount))
+ })", {"value_to_shift", "shift_amount"});
+ m_context << Instruction::POP;
+
+ }
break;
case Token::SHR:
default:
diff --git a/test/libsolidity/SolidityEndToEndTest.cpp b/test/libsolidity/SolidityEndToEndTest.cpp
index b53a9294..3b3cc4f7 100644
--- a/test/libsolidity/SolidityEndToEndTest.cpp
+++ b/test/libsolidity/SolidityEndToEndTest.cpp
@@ -10487,6 +10487,7 @@ BOOST_AUTO_TEST_CASE(shift_right)
ABI_CHECK(callContractFunction("f(uint256,uint256)", u256(0x4266), u256(8)), encodeArgs(u256(0x42)));
ABI_CHECK(callContractFunction("f(uint256,uint256)", u256(0x4266), u256(16)), encodeArgs(u256(0)));
ABI_CHECK(callContractFunction("f(uint256,uint256)", u256(0x4266), u256(17)), encodeArgs(u256(0)));
+ ABI_CHECK(callContractFunction("f(uint256,uint256)", u256(1)<<255, u256(5)), encodeArgs(u256(1)<<250));
}
BOOST_AUTO_TEST_CASE(shift_right_garbled)
@@ -10583,16 +10584,73 @@ BOOST_AUTO_TEST_CASE(shift_right_negative_lvalue)
compileAndRun(sourceCode, 0, "C");
ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4266), u256(0)), encodeArgs(u256(-4266)));
ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4266), u256(1)), encodeArgs(u256(-2133)));
- ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4266), u256(4)), encodeArgs(u256(-266)));
- ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4266), u256(8)), encodeArgs(u256(-16)));
- ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4266), u256(16)), encodeArgs(u256(0)));
- ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4266), u256(17)), encodeArgs(u256(0)));
+ ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4266), u256(4)), encodeArgs(u256(-267)));
+ ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4266), u256(8)), encodeArgs(u256(-17)));
+ ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4266), u256(16)), encodeArgs(u256(-1)));
+ ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4266), u256(17)), encodeArgs(u256(-1)));
ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4267), u256(0)), encodeArgs(u256(-4267)));
- ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4267), u256(1)), encodeArgs(u256(-2133)));
- ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4267), u256(4)), encodeArgs(u256(-266)));
- ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4267), u256(8)), encodeArgs(u256(-16)));
- ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4267), u256(16)), encodeArgs(u256(0)));
- ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4267), u256(17)), encodeArgs(u256(0)));
+ ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4267), u256(1)), encodeArgs(u256(-2134)));
+ ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4267), u256(4)), encodeArgs(u256(-267)));
+ ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4267), u256(8)), encodeArgs(u256(-17)));
+ ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4267), u256(16)), encodeArgs(u256(-1)));
+ ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4267), u256(17)), encodeArgs(u256(-1)));
+}
+
+BOOST_AUTO_TEST_CASE(shift_right_negative_literal)
+{
+ char const* sourceCode = R"(
+ contract C {
+ function f1() pure returns (bool) {
+ return (-4266 >> 0) == -4266;
+ }
+ function f2() pure returns (bool) {
+ return (-4266 >> 1) == -2133;
+ }
+ function f3() pure returns (bool) {
+ return (-4266 >> 4) == -267;
+ }
+ function f4() pure returns (bool) {
+ return (-4266 >> 8) == -17;
+ }
+ function f5() pure returns (bool) {
+ return (-4266 >> 16) == -1;
+ }
+ function f6() pure returns (bool) {
+ return (-4266 >> 17) == -1;
+ }
+ function g1() pure returns (bool) {
+ return (-4267 >> 0) == -4267;
+ }
+ function g2() pure returns (bool) {
+ return (-4267 >> 1) == -2134;
+ }
+ function g3() pure returns (bool) {
+ return (-4267 >> 4) == -267;
+ }
+ function g4() pure returns (bool) {
+ return (-4267 >> 8) == -17;
+ }
+ function g5() pure returns (bool) {
+ return (-4267 >> 16) == -1;
+ }
+ function g6() pure returns (bool) {
+ return (-4267 >> 17) == -1;
+ }
+ }
+ )";
+ compileAndRun(sourceCode, 0, "C");
+ ABI_CHECK(callContractFunction("f1()"), encodeArgs(true));
+ ABI_CHECK(callContractFunction("f2()"), encodeArgs(true));
+ ABI_CHECK(callContractFunction("f3()"), encodeArgs(true));
+ ABI_CHECK(callContractFunction("f4()"), encodeArgs(true));
+ ABI_CHECK(callContractFunction("f5()"), encodeArgs(true));
+ ABI_CHECK(callContractFunction("f6()"), encodeArgs(true));
+ ABI_CHECK(callContractFunction("g1()"), encodeArgs(true));
+ ABI_CHECK(callContractFunction("g2()"), encodeArgs(true));
+ ABI_CHECK(callContractFunction("g3()"), encodeArgs(true));
+ ABI_CHECK(callContractFunction("g4()"), encodeArgs(true));
+ ABI_CHECK(callContractFunction("g5()"), encodeArgs(true));
+ ABI_CHECK(callContractFunction("g6()"), encodeArgs(true));
}
BOOST_AUTO_TEST_CASE(shift_right_negative_lvalue_int8)
@@ -10607,16 +10665,16 @@ BOOST_AUTO_TEST_CASE(shift_right_negative_lvalue_int8)
compileAndRun(sourceCode, 0, "C");
ABI_CHECK(callContractFunction("f(int8,int8)", u256(-66), u256(0)), encodeArgs(u256(-66)));
ABI_CHECK(callContractFunction("f(int8,int8)", u256(-66), u256(1)), encodeArgs(u256(-33)));
- ABI_CHECK(callContractFunction("f(int8,int8)", u256(-66), u256(4)), encodeArgs(u256(-4)));
- ABI_CHECK(callContractFunction("f(int8,int8)", u256(-66), u256(8)), encodeArgs(u256(0)));
- ABI_CHECK(callContractFunction("f(int8,int8)", u256(-66), u256(16)), encodeArgs(u256(0)));
- ABI_CHECK(callContractFunction("f(int8,int8)", u256(-66), u256(17)), encodeArgs(u256(0)));
+ ABI_CHECK(callContractFunction("f(int8,int8)", u256(-66), u256(4)), encodeArgs(u256(-5)));
+ ABI_CHECK(callContractFunction("f(int8,int8)", u256(-66), u256(8)), encodeArgs(u256(-1)));
+ ABI_CHECK(callContractFunction("f(int8,int8)", u256(-66), u256(16)), encodeArgs(u256(-1)));
+ ABI_CHECK(callContractFunction("f(int8,int8)", u256(-66), u256(17)), encodeArgs(u256(-1)));
ABI_CHECK(callContractFunction("f(int8,int8)", u256(-67), u256(0)), encodeArgs(u256(-67)));
- ABI_CHECK(callContractFunction("f(int8,int8)", u256(-67), u256(1)), encodeArgs(u256(-33)));
- ABI_CHECK(callContractFunction("f(int8,int8)", u256(-67), u256(4)), encodeArgs(u256(-4)));
- ABI_CHECK(callContractFunction("f(int8,int8)", u256(-67), u256(8)), encodeArgs(u256(0)));
- ABI_CHECK(callContractFunction("f(int8,int8)", u256(-67), u256(16)), encodeArgs(u256(0)));
- ABI_CHECK(callContractFunction("f(int8,int8)", u256(-67), u256(17)), encodeArgs(u256(0)));
+ ABI_CHECK(callContractFunction("f(int8,int8)", u256(-67), u256(1)), encodeArgs(u256(-34)));
+ ABI_CHECK(callContractFunction("f(int8,int8)", u256(-67), u256(4)), encodeArgs(u256(-5)));
+ ABI_CHECK(callContractFunction("f(int8,int8)", u256(-67), u256(8)), encodeArgs(u256(-1)));
+ ABI_CHECK(callContractFunction("f(int8,int8)", u256(-67), u256(16)), encodeArgs(u256(-1)));
+ ABI_CHECK(callContractFunction("f(int8,int8)", u256(-67), u256(17)), encodeArgs(u256(-1)));
}
BOOST_AUTO_TEST_CASE(shift_right_negative_lvalue_signextend_int8)
@@ -10630,10 +10688,10 @@ BOOST_AUTO_TEST_CASE(shift_right_negative_lvalue_signextend_int8)
)";
compileAndRun(sourceCode, 0, "C");
ABI_CHECK(callContractFunction("f(int8,int8)", u256(0x99u), u256(0)), encodeArgs(u256(-103)));
- ABI_CHECK(callContractFunction("f(int8,int8)", u256(0x99u), u256(1)), encodeArgs(u256(-51)));
- ABI_CHECK(callContractFunction("f(int8,int8)", u256(0x99u), u256(2)), encodeArgs(u256(-25)));
- ABI_CHECK(callContractFunction("f(int8,int8)", u256(0x99u), u256(4)), encodeArgs(u256(-6)));
- ABI_CHECK(callContractFunction("f(int8,int8)", u256(0x99u), u256(8)), encodeArgs(u256(0)));
+ ABI_CHECK(callContractFunction("f(int8,int8)", u256(0x99u), u256(1)), encodeArgs(u256(-52)));
+ ABI_CHECK(callContractFunction("f(int8,int8)", u256(0x99u), u256(2)), encodeArgs(u256(-26)));
+ ABI_CHECK(callContractFunction("f(int8,int8)", u256(0x99u), u256(4)), encodeArgs(u256(-7)));
+ ABI_CHECK(callContractFunction("f(int8,int8)", u256(0x99u), u256(8)), encodeArgs(u256(-1)));
}
BOOST_AUTO_TEST_CASE(shift_right_negative_lvalue_signextend_int16)
@@ -10647,10 +10705,10 @@ BOOST_AUTO_TEST_CASE(shift_right_negative_lvalue_signextend_int16)
)";
compileAndRun(sourceCode, 0, "C");
ABI_CHECK(callContractFunction("f(int16,int16)", u256(0xFF99u), u256(0)), encodeArgs(u256(-103)));
- ABI_CHECK(callContractFunction("f(int16,int16)", u256(0xFF99u), u256(1)), encodeArgs(u256(-51)));
- ABI_CHECK(callContractFunction("f(int16,int16)", u256(0xFF99u), u256(2)), encodeArgs(u256(-25)));
- ABI_CHECK(callContractFunction("f(int16,int16)", u256(0xFF99u), u256(4)), encodeArgs(u256(-6)));
- ABI_CHECK(callContractFunction("f(int16,int16)", u256(0xFF99u), u256(8)), encodeArgs(u256(0)));
+ ABI_CHECK(callContractFunction("f(int16,int16)", u256(0xFF99u), u256(1)), encodeArgs(u256(-52)));
+ ABI_CHECK(callContractFunction("f(int16,int16)", u256(0xFF99u), u256(2)), encodeArgs(u256(-26)));
+ ABI_CHECK(callContractFunction("f(int16,int16)", u256(0xFF99u), u256(4)), encodeArgs(u256(-7)));
+ ABI_CHECK(callContractFunction("f(int16,int16)", u256(0xFF99u), u256(8)), encodeArgs(u256(-1)));
}
BOOST_AUTO_TEST_CASE(shift_right_negative_lvalue_signextend_int32)
@@ -10664,10 +10722,10 @@ BOOST_AUTO_TEST_CASE(shift_right_negative_lvalue_signextend_int32)
)";
compileAndRun(sourceCode, 0, "C");
ABI_CHECK(callContractFunction("f(int32,int32)", u256(0xFFFFFF99u), u256(0)), encodeArgs(u256(-103)));
- ABI_CHECK(callContractFunction("f(int32,int32)", u256(0xFFFFFF99u), u256(1)), encodeArgs(u256(-51)));
- ABI_CHECK(callContractFunction("f(int32,int32)", u256(0xFFFFFF99u), u256(2)), encodeArgs(u256(-25)));
- ABI_CHECK(callContractFunction("f(int32,int32)", u256(0xFFFFFF99u), u256(4)), encodeArgs(u256(-6)));
- ABI_CHECK(callContractFunction("f(int32,int32)", u256(0xFFFFFF99u), u256(8)), encodeArgs(u256(0)));
+ ABI_CHECK(callContractFunction("f(int32,int32)", u256(0xFFFFFF99u), u256(1)), encodeArgs(u256(-52)));
+ ABI_CHECK(callContractFunction("f(int32,int32)", u256(0xFFFFFF99u), u256(2)), encodeArgs(u256(-26)));
+ ABI_CHECK(callContractFunction("f(int32,int32)", u256(0xFFFFFF99u), u256(4)), encodeArgs(u256(-7)));
+ ABI_CHECK(callContractFunction("f(int32,int32)", u256(0xFFFFFF99u), u256(8)), encodeArgs(u256(-1)));
}
@@ -10683,16 +10741,16 @@ BOOST_AUTO_TEST_CASE(shift_right_negative_lvalue_int16)
compileAndRun(sourceCode, 0, "C");
ABI_CHECK(callContractFunction("f(int16,int16)", u256(-4266), u256(0)), encodeArgs(u256(-4266)));
ABI_CHECK(callContractFunction("f(int16,int16)", u256(-4266), u256(1)), encodeArgs(u256(-2133)));
- ABI_CHECK(callContractFunction("f(int16,int16)", u256(-4266), u256(4)), encodeArgs(u256(-266)));
- ABI_CHECK(callContractFunction("f(int16,int16)", u256(-4266), u256(8)), encodeArgs(u256(-16)));
- ABI_CHECK(callContractFunction("f(int16,int16)", u256(-4266), u256(16)), encodeArgs(u256(0)));
- ABI_CHECK(callContractFunction("f(int16,int16)", u256(-4266), u256(17)), encodeArgs(u256(0)));
+ ABI_CHECK(callContractFunction("f(int16,int16)", u256(-4266), u256(4)), encodeArgs(u256(-267)));
+ ABI_CHECK(callContractFunction("f(int16,int16)", u256(-4266), u256(8)), encodeArgs(u256(-17)));
+ ABI_CHECK(callContractFunction("f(int16,int16)", u256(-4266), u256(16)), encodeArgs(u256(-1)));
+ ABI_CHECK(callContractFunction("f(int16,int16)", u256(-4266), u256(17)), encodeArgs(u256(-1)));
ABI_CHECK(callContractFunction("f(int16,int16)", u256(-4267), u256(0)), encodeArgs(u256(-4267)));
- ABI_CHECK(callContractFunction("f(int16,int16)", u256(-4267), u256(1)), encodeArgs(u256(-2133)));
- ABI_CHECK(callContractFunction("f(int16,int16)", u256(-4267), u256(4)), encodeArgs(u256(-266)));
- ABI_CHECK(callContractFunction("f(int16,int16)", u256(-4267), u256(8)), encodeArgs(u256(-16)));
- ABI_CHECK(callContractFunction("f(int16,int16)", u256(-4267), u256(16)), encodeArgs(u256(0)));
- ABI_CHECK(callContractFunction("f(int16,int16)", u256(-4267), u256(17)), encodeArgs(u256(0)));
+ ABI_CHECK(callContractFunction("f(int16,int16)", u256(-4267), u256(1)), encodeArgs(u256(-2134)));
+ ABI_CHECK(callContractFunction("f(int16,int16)", u256(-4267), u256(4)), encodeArgs(u256(-267)));
+ ABI_CHECK(callContractFunction("f(int16,int16)", u256(-4267), u256(8)), encodeArgs(u256(-17)));
+ ABI_CHECK(callContractFunction("f(int16,int16)", u256(-4267), u256(16)), encodeArgs(u256(-1)));
+ ABI_CHECK(callContractFunction("f(int16,int16)", u256(-4267), u256(17)), encodeArgs(u256(-1)));
}
BOOST_AUTO_TEST_CASE(shift_right_negative_lvalue_int32)
@@ -10707,16 +10765,16 @@ BOOST_AUTO_TEST_CASE(shift_right_negative_lvalue_int32)
compileAndRun(sourceCode, 0, "C");
ABI_CHECK(callContractFunction("f(int32,int32)", u256(-4266), u256(0)), encodeArgs(u256(-4266)));
ABI_CHECK(callContractFunction("f(int32,int32)", u256(-4266), u256(1)), encodeArgs(u256(-2133)));
- ABI_CHECK(callContractFunction("f(int32,int32)", u256(-4266), u256(4)), encodeArgs(u256(-266)));
- ABI_CHECK(callContractFunction("f(int32,int32)", u256(-4266), u256(8)), encodeArgs(u256(-16)));
- ABI_CHECK(callContractFunction("f(int32,int32)", u256(-4266), u256(16)), encodeArgs(u256(0)));
- ABI_CHECK(callContractFunction("f(int32,int32)", u256(-4266), u256(17)), encodeArgs(u256(0)));
+ ABI_CHECK(callContractFunction("f(int32,int32)", u256(-4266), u256(4)), encodeArgs(u256(-267)));
+ ABI_CHECK(callContractFunction("f(int32,int32)", u256(-4266), u256(8)), encodeArgs(u256(-17)));
+ ABI_CHECK(callContractFunction("f(int32,int32)", u256(-4266), u256(16)), encodeArgs(u256(-1)));
+ ABI_CHECK(callContractFunction("f(int32,int32)", u256(-4266), u256(17)), encodeArgs(u256(-1)));
ABI_CHECK(callContractFunction("f(int32,int32)", u256(-4267), u256(0)), encodeArgs(u256(-4267)));
- ABI_CHECK(callContractFunction("f(int32,int32)", u256(-4267), u256(1)), encodeArgs(u256(-2133)));
- ABI_CHECK(callContractFunction("f(int32,int32)", u256(-4267), u256(4)), encodeArgs(u256(-266)));
- ABI_CHECK(callContractFunction("f(int32,int32)", u256(-4267), u256(8)), encodeArgs(u256(-16)));
- ABI_CHECK(callContractFunction("f(int32,int32)", u256(-4267), u256(16)), encodeArgs(u256(0)));
- ABI_CHECK(callContractFunction("f(int32,int32)", u256(-4267), u256(17)), encodeArgs(u256(0)));
+ ABI_CHECK(callContractFunction("f(int32,int32)", u256(-4267), u256(1)), encodeArgs(u256(-2134)));
+ ABI_CHECK(callContractFunction("f(int32,int32)", u256(-4267), u256(4)), encodeArgs(u256(-267)));
+ ABI_CHECK(callContractFunction("f(int32,int32)", u256(-4267), u256(8)), encodeArgs(u256(-17)));
+ ABI_CHECK(callContractFunction("f(int32,int32)", u256(-4267), u256(16)), encodeArgs(u256(-1)));
+ ABI_CHECK(callContractFunction("f(int32,int32)", u256(-4267), u256(17)), encodeArgs(u256(-1)));
}
BOOST_AUTO_TEST_CASE(shift_right_negative_lvalue_assignment)
@@ -10732,16 +10790,16 @@ BOOST_AUTO_TEST_CASE(shift_right_negative_lvalue_assignment)
compileAndRun(sourceCode, 0, "C");
ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4266), u256(0)), encodeArgs(u256(-4266)));
ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4266), u256(1)), encodeArgs(u256(-2133)));
- ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4266), u256(4)), encodeArgs(u256(-266)));
- ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4266), u256(8)), encodeArgs(u256(-16)));
- ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4266), u256(16)), encodeArgs(u256(0)));
- ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4266), u256(17)), encodeArgs(u256(0)));
+ ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4266), u256(4)), encodeArgs(u256(-267)));
+ ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4266), u256(8)), encodeArgs(u256(-17)));
+ ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4266), u256(16)), encodeArgs(u256(-1)));
+ ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4266), u256(17)), encodeArgs(u256(-1)));
ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4267), u256(0)), encodeArgs(u256(-4267)));
- ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4267), u256(1)), encodeArgs(u256(-2133)));
- ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4267), u256(4)), encodeArgs(u256(-266)));
- ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4267), u256(8)), encodeArgs(u256(-16)));
- ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4267), u256(16)), encodeArgs(u256(0)));
- ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4267), u256(17)), encodeArgs(u256(0)));
+ ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4267), u256(1)), encodeArgs(u256(-2134)));
+ ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4267), u256(4)), encodeArgs(u256(-267)));
+ ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4267), u256(8)), encodeArgs(u256(-17)));
+ ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4267), u256(16)), encodeArgs(u256(-1)));
+ ABI_CHECK(callContractFunction("f(int256,int256)", u256(-4267), u256(17)), encodeArgs(u256(-1)));
}
BOOST_AUTO_TEST_CASE(shift_negative_rvalue)
diff --git a/test/libsolidity/SyntaxTest.cpp b/test/libsolidity/SyntaxTest.cpp
index 1c2355d5..430073a0 100644
--- a/test/libsolidity/SyntaxTest.cpp
+++ b/test/libsolidity/SyntaxTest.cpp
@@ -268,9 +268,16 @@ int SyntaxTest::registerTests(
[fullpath]
{
BOOST_REQUIRE_NO_THROW({
- stringstream errorStream;
- if (!SyntaxTest(fullpath.string()).run(errorStream))
- BOOST_ERROR("Test expectation mismatch.\n" + errorStream.str());
+ try
+ {
+ stringstream errorStream;
+ if (!SyntaxTest(fullpath.string()).run(errorStream))
+ BOOST_ERROR("Test expectation mismatch.\n" + errorStream.str());
+ }
+ catch (boost::exception const& _e)
+ {
+ BOOST_ERROR("Exception during syntax test: " << boost::diagnostic_information(_e));
+ }
});
},
_path.stem().string(),
diff --git a/test/tools/isoltest.cpp b/test/tools/isoltest.cpp
index 100fcbf0..d4b99e9d 100644
--- a/test/tools/isoltest.cpp
+++ b/test/tools/isoltest.cpp
@@ -150,39 +150,22 @@ SyntaxTestTool::Result SyntaxTestTool::process()
m_test = unique_ptr<SyntaxTest>(new SyntaxTest(m_path.string()));
success = m_test->run(outputMessages, " ", m_formatted);
}
- catch(CompilerError const& _e)
+ catch(boost::exception const& _e)
{
FormattedScope(cout, m_formatted, {BOLD, RED}) <<
- "Exception: " << SyntaxTest::errorMessage(_e) << endl;
- return Result::Exception;
- }
- catch(InternalCompilerError const& _e)
- {
- FormattedScope(cout, m_formatted, {BOLD, RED}) <<
- "InternalCompilerError: " << SyntaxTest::errorMessage(_e) << endl;
- return Result::Exception;
- }
- catch(FatalError const& _e)
- {
- FormattedScope(cout, m_formatted, {BOLD, RED}) <<
- "FatalError: " << SyntaxTest::errorMessage(_e) << endl;
- return Result::Exception;
- }
- catch(UnimplementedFeatureError const& _e)
- {
- FormattedScope(cout, m_formatted, {BOLD, RED}) <<
- "UnimplementedFeatureError: " << SyntaxTest::errorMessage(_e) << endl;
+ "Exception during syntax test: " << boost::diagnostic_information(_e) << endl;
return Result::Exception;
}
catch (std::exception const& _e)
{
- FormattedScope(cout, m_formatted, {BOLD, RED}) << "Exception: " << _e.what() << endl;
+ FormattedScope(cout, m_formatted, {BOLD, RED}) <<
+ "Exception during syntax test: " << _e.what() << endl;
return Result::Exception;
}
catch(...)
{
FormattedScope(cout, m_formatted, {BOLD, RED}) <<
- "Unknown Exception" << endl;
+ "Unknown exception during syntax test." << endl;
return Result::Exception;
}