aboutsummaryrefslogtreecommitdiffstats
path: root/libsolidity/SolidityOptimizer.cpp
diff options
context:
space:
mode:
authorCJentzsch <jentzsch.software@gmail.com>2015-04-21 04:48:53 +0800
committerCJentzsch <jentzsch.software@gmail.com>2015-04-21 04:48:53 +0800
commitb2adcf3bf3a6326628b5413bddae2742073d8078 (patch)
treef02bbd0bc7841f0b37b9473a9dcacc41b542fe0f /libsolidity/SolidityOptimizer.cpp
parent71012a83e86dac3a899780219a78f18acd1708c5 (diff)
downloaddexon-solidity-b2adcf3bf3a6326628b5413bddae2742073d8078.tar
dexon-solidity-b2adcf3bf3a6326628b5413bddae2742073d8078.tar.gz
dexon-solidity-b2adcf3bf3a6326628b5413bddae2742073d8078.tar.bz2
dexon-solidity-b2adcf3bf3a6326628b5413bddae2742073d8078.tar.lz
dexon-solidity-b2adcf3bf3a6326628b5413bddae2742073d8078.tar.xz
dexon-solidity-b2adcf3bf3a6326628b5413bddae2742073d8078.tar.zst
dexon-solidity-b2adcf3bf3a6326628b5413bddae2742073d8078.zip
Restructure test folders
Diffstat (limited to 'libsolidity/SolidityOptimizer.cpp')
-rw-r--r--libsolidity/SolidityOptimizer.cpp820
1 files changed, 820 insertions, 0 deletions
diff --git a/libsolidity/SolidityOptimizer.cpp b/libsolidity/SolidityOptimizer.cpp
new file mode 100644
index 00000000..8ab1de8f
--- /dev/null
+++ b/libsolidity/SolidityOptimizer.cpp
@@ -0,0 +1,820 @@
+/*
+ This file is part of cpp-ethereum.
+
+ cpp-ethereum is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ cpp-ethereum is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with cpp-ethereum. If not, see <http://www.gnu.org/licenses/>.
+*/
+/**
+ * @author Christian <c@ethdev.com>
+ * @date 2014
+ * Tests for the Solidity optimizer.
+ */
+
+#if ETH_SOLIDITY
+
+#include <string>
+#include <tuple>
+#include <boost/test/unit_test.hpp>
+#include <boost/lexical_cast.hpp>
+#include <test/libsolidity/solidityExecutionFramework.h>
+#include <libevmcore/CommonSubexpressionEliminator.h>
+#include <libevmcore/ControlFlowGraph.h>
+#include <libevmcore/Assembly.h>
+
+using namespace std;
+using namespace dev::eth;
+
+namespace dev
+{
+namespace solidity
+{
+namespace test
+{
+
+class OptimizerTestFramework: public ExecutionFramework
+{
+public:
+ OptimizerTestFramework() { }
+ /// Compiles the source code with and without optimizing.
+ void compileBothVersions(
+ std::string const& _sourceCode,
+ u256 const& _value = 0,
+ std::string const& _contractName = ""
+ )
+ {
+ m_optimize = false;
+ bytes nonOptimizedBytecode = compileAndRun(_sourceCode, _value, _contractName);
+ m_nonOptimizedContract = m_contractAddress;
+ m_optimize = true;
+ bytes optimizedBytecode = compileAndRun(_sourceCode, _value, _contractName);
+ size_t nonOptimizedSize = 0;
+ eth::eachInstruction(nonOptimizedBytecode, [&](Instruction, u256 const&) {
+ nonOptimizedSize++;
+ });
+ size_t optimizedSize = 0;
+ eth::eachInstruction(optimizedBytecode, [&](Instruction, u256 const&) {
+ optimizedSize++;
+ });
+ BOOST_CHECK_MESSAGE(
+ nonOptimizedSize > optimizedSize,
+ "Optimizer did not reduce bytecode size."
+ );
+ m_optimizedContract = m_contractAddress;
+ }
+
+ template <class... Args>
+ void compareVersions(std::string _sig, Args const&... _arguments)
+ {
+ m_contractAddress = m_nonOptimizedContract;
+ bytes nonOptimizedOutput = callContractFunction(_sig, _arguments...);
+ m_contractAddress = m_optimizedContract;
+ bytes optimizedOutput = callContractFunction(_sig, _arguments...);
+ BOOST_CHECK_MESSAGE(nonOptimizedOutput == optimizedOutput, "Computed values do not match."
+ "\nNon-Optimized: " + toHex(nonOptimizedOutput) +
+ "\nOptimized: " + toHex(optimizedOutput));
+ }
+
+ AssemblyItems getCSE(AssemblyItems const& _input)
+ {
+ eth::CommonSubexpressionEliminator cse;
+ BOOST_REQUIRE(cse.feedItems(_input.begin(), _input.end()) == _input.end());
+ return cse.getOptimizedItems();
+ }
+
+ void checkCSE(AssemblyItems const& _input, AssemblyItems const& _expectation)
+ {
+ AssemblyItems output = getCSE(_input);
+ BOOST_CHECK_EQUAL_COLLECTIONS(_expectation.begin(), _expectation.end(), output.begin(), output.end());
+ }
+
+ void checkCFG(AssemblyItems const& _input, AssemblyItems const& _expectation)
+ {
+ AssemblyItems output = _input;
+ // Running it four times should be enough for these tests.
+ for (unsigned i = 0; i < 4; ++i)
+ {
+ eth::ControlFlowGraph cfg(output);
+ output = cfg.optimisedItems();
+ }
+ BOOST_CHECK_EQUAL_COLLECTIONS(_expectation.begin(), _expectation.end(), output.begin(), output.end());
+ }
+
+protected:
+ Address m_optimizedContract;
+ Address m_nonOptimizedContract;
+};
+
+BOOST_FIXTURE_TEST_SUITE(SolidityOptimizer, OptimizerTestFramework)
+
+BOOST_AUTO_TEST_CASE(smoke_test)
+{
+ char const* sourceCode = R"(
+ contract test {
+ function f(uint a) returns (uint b) {
+ return a;
+ }
+ })";
+ compileBothVersions(sourceCode);
+ compareVersions("f(uint256)", u256(7));
+}
+
+BOOST_AUTO_TEST_CASE(identities)
+{
+ char const* sourceCode = R"(
+ contract test {
+ function f(int a) returns (int b) {
+ return int(0) | (int(1) * (int(0) ^ (0 + a)));
+ }
+ })";
+ compileBothVersions(sourceCode);
+ compareVersions("f(uint256)", u256(0x12334664));
+}
+
+BOOST_AUTO_TEST_CASE(unused_expressions)
+{
+ char const* sourceCode = R"(
+ contract test {
+ uint data;
+ function f() returns (uint a, uint b) {
+ 10 + 20;
+ data;
+ }
+ })";
+ compileBothVersions(sourceCode);
+ compareVersions("f()");
+}
+
+BOOST_AUTO_TEST_CASE(constant_folding_both_sides)
+{
+ // if constants involving the same associative and commutative operator are applied from both
+ // sides, the operator should be applied only once, because the expression compiler pushes
+ // literals as late as possible
+ char const* sourceCode = R"(
+ contract test {
+ function f(uint x) returns (uint y) {
+ return 98 ^ (7 * ((1 | (x | 1000)) * 40) ^ 102);
+ }
+ })";
+ compileBothVersions(sourceCode);
+ compareVersions("f(uint256)");
+}
+
+BOOST_AUTO_TEST_CASE(storage_access)
+{
+ char const* sourceCode = R"(
+ contract test {
+ uint8[40] data;
+ function f(uint x) returns (uint y) {
+ data[2] = data[7] = uint8(x);
+ data[4] = data[2] * 10 + data[3];
+ }
+ }
+ )";
+ compileBothVersions(sourceCode);
+ compareVersions("f(uint256)");
+}
+
+BOOST_AUTO_TEST_CASE(array_copy)
+{
+ char const* sourceCode = R"(
+ contract test {
+ bytes2[] data1;
+ bytes5[] data2;
+ function f(uint x) returns (uint l, uint y) {
+ for (uint i = 0; i < msg.data.length; ++i)
+ data1[i] = msg.data[i];
+ data2 = data1;
+ l = data2.length;
+ y = uint(data2[x]);
+ }
+ }
+ )";
+ compileBothVersions(sourceCode);
+ compareVersions("f(uint256)", 0);
+ compareVersions("f(uint256)", 10);
+ compareVersions("f(uint256)", 36);
+}
+
+BOOST_AUTO_TEST_CASE(function_calls)
+{
+ char const* sourceCode = R"(
+ contract test {
+ function f1(uint x) returns (uint) { return x*x; }
+ function f(uint x) returns (uint) { return f1(7+x) - this.f1(x**9); }
+ }
+ )";
+ compileBothVersions(sourceCode);
+ compareVersions("f(uint256)", 0);
+ compareVersions("f(uint256)", 10);
+ compareVersions("f(uint256)", 36);
+}
+
+BOOST_AUTO_TEST_CASE(cse_intermediate_swap)
+{
+ eth::CommonSubexpressionEliminator cse;
+ AssemblyItems input{
+ Instruction::SWAP1, Instruction::POP, Instruction::ADD, u256(0), Instruction::SWAP1,
+ Instruction::SLOAD, Instruction::SWAP1, u256(100), Instruction::EXP, Instruction::SWAP1,
+ Instruction::DIV, u256(0xff), Instruction::AND
+ };
+ BOOST_REQUIRE(cse.feedItems(input.begin(), input.end()) == input.end());
+ AssemblyItems output = cse.getOptimizedItems();
+ BOOST_CHECK(!output.empty());
+}
+
+BOOST_AUTO_TEST_CASE(cse_negative_stack_access)
+{
+ AssemblyItems input{Instruction::DUP2, u256(0)};
+ checkCSE(input, input);
+}
+
+BOOST_AUTO_TEST_CASE(cse_negative_stack_end)
+{
+ AssemblyItems input{Instruction::ADD};
+ checkCSE(input, input);
+}
+
+BOOST_AUTO_TEST_CASE(cse_intermediate_negative_stack)
+{
+ AssemblyItems input{Instruction::ADD, u256(1), Instruction::DUP1};
+ checkCSE(input, input);
+}
+
+BOOST_AUTO_TEST_CASE(cse_pop)
+{
+ checkCSE({Instruction::POP}, {Instruction::POP});
+}
+
+BOOST_AUTO_TEST_CASE(cse_unneeded_items)
+{
+ AssemblyItems input{
+ Instruction::ADD,
+ Instruction::SWAP1,
+ Instruction::POP,
+ u256(7),
+ u256(8),
+ };
+ checkCSE(input, input);
+}
+
+BOOST_AUTO_TEST_CASE(cse_constant_addition)
+{
+ AssemblyItems input{u256(7), u256(8), Instruction::ADD};
+ checkCSE(input, {u256(7 + 8)});
+}
+
+BOOST_AUTO_TEST_CASE(cse_invariants)
+{
+ AssemblyItems input{
+ Instruction::DUP1,
+ Instruction::DUP1,
+ u256(0),
+ Instruction::OR,
+ Instruction::OR
+ };
+ checkCSE(input, {Instruction::DUP1});
+}
+
+BOOST_AUTO_TEST_CASE(cse_subself)
+{
+ checkCSE({Instruction::DUP1, Instruction::SUB}, {Instruction::POP, u256(0)});
+}
+
+BOOST_AUTO_TEST_CASE(cse_subother)
+{
+ checkCSE({Instruction::SUB}, {Instruction::SUB});
+}
+
+BOOST_AUTO_TEST_CASE(cse_double_negation)
+{
+ checkCSE({Instruction::DUP5, Instruction::NOT, Instruction::NOT}, {Instruction::DUP5});
+}
+
+BOOST_AUTO_TEST_CASE(cse_associativity)
+{
+ AssemblyItems input{
+ Instruction::DUP1,
+ Instruction::DUP1,
+ u256(0),
+ Instruction::OR,
+ Instruction::OR
+ };
+ checkCSE(input, {Instruction::DUP1});
+}
+
+BOOST_AUTO_TEST_CASE(cse_associativity2)
+{
+ AssemblyItems input{
+ u256(0),
+ Instruction::DUP2,
+ u256(2),
+ u256(1),
+ Instruction::DUP6,
+ Instruction::ADD,
+ u256(2),
+ Instruction::ADD,
+ Instruction::ADD,
+ Instruction::ADD,
+ Instruction::ADD
+ };
+ checkCSE(input, {Instruction::DUP2, Instruction::DUP2, Instruction::ADD, u256(5), Instruction::ADD});
+}
+
+BOOST_AUTO_TEST_CASE(cse_storage)
+{
+ AssemblyItems input{
+ u256(0),
+ Instruction::SLOAD,
+ u256(0),
+ Instruction::SLOAD,
+ Instruction::ADD,
+ u256(0),
+ Instruction::SSTORE
+ };
+ checkCSE(input, {
+ u256(0),
+ Instruction::DUP1,
+ Instruction::SLOAD,
+ Instruction::DUP1,
+ Instruction::ADD,
+ Instruction::SWAP1,
+ Instruction::SSTORE
+ });
+}
+
+BOOST_AUTO_TEST_CASE(cse_noninterleaved_storage)
+{
+ // two stores to the same location should be replaced by only one store, even if we
+ // read in the meantime
+ AssemblyItems input{
+ u256(7),
+ Instruction::DUP2,
+ Instruction::SSTORE,
+ Instruction::DUP1,
+ Instruction::SLOAD,
+ u256(8),
+ Instruction::DUP3,
+ Instruction::SSTORE
+ };
+ checkCSE(input, {
+ u256(8),
+ Instruction::DUP2,
+ Instruction::SSTORE,
+ u256(7)
+ });
+}
+
+BOOST_AUTO_TEST_CASE(cse_interleaved_storage)
+{
+ // stores and reads to/from two unknown locations, should not optimize away the first store
+ AssemblyItems input{
+ u256(7),
+ Instruction::DUP2,
+ Instruction::SSTORE, // store to "DUP1"
+ Instruction::DUP2,
+ Instruction::SLOAD, // read from "DUP2", might be equal to "DUP1"
+ u256(0),
+ Instruction::DUP3,
+ Instruction::SSTORE // store different value to "DUP1"
+ };
+ checkCSE(input, input);
+}
+
+BOOST_AUTO_TEST_CASE(cse_interleaved_storage_same_value)
+{
+ // stores and reads to/from two unknown locations, should not optimize away the first store
+ // but it should optimize away the second, since we already know the value will be the same
+ AssemblyItems input{
+ u256(7),
+ Instruction::DUP2,
+ Instruction::SSTORE, // store to "DUP1"
+ Instruction::DUP2,
+ Instruction::SLOAD, // read from "DUP2", might be equal to "DUP1"
+ u256(6),
+ u256(1),
+ Instruction::ADD,
+ Instruction::DUP3,
+ Instruction::SSTORE // store same value to "DUP1"
+ };
+ checkCSE(input, {
+ u256(7),
+ Instruction::DUP2,
+ Instruction::SSTORE,
+ Instruction::DUP2,
+ Instruction::SLOAD
+ });
+}
+
+BOOST_AUTO_TEST_CASE(cse_interleaved_storage_at_known_location)
+{
+ // stores and reads to/from two known locations, should optimize away the first store,
+ // because we know that the location is different
+ AssemblyItems input{
+ u256(0x70),
+ u256(1),
+ Instruction::SSTORE, // store to 1
+ u256(2),
+ Instruction::SLOAD, // read from 2, is different from 1
+ u256(0x90),
+ u256(1),
+ Instruction::SSTORE // store different value at 1
+ };
+ checkCSE(input, {
+ u256(2),
+ Instruction::SLOAD,
+ u256(0x90),
+ u256(1),
+ Instruction::SSTORE
+ });
+}
+
+BOOST_AUTO_TEST_CASE(cse_interleaved_storage_at_known_location_offset)
+{
+ // stores and reads to/from two locations which are known to be different,
+ // should optimize away the first store, because we know that the location is different
+ AssemblyItems input{
+ u256(0x70),
+ Instruction::DUP2,
+ u256(1),
+ Instruction::ADD,
+ Instruction::SSTORE, // store to "DUP1"+1
+ Instruction::DUP1,
+ u256(2),
+ Instruction::ADD,
+ Instruction::SLOAD, // read from "DUP1"+2, is different from "DUP1"+1
+ u256(0x90),
+ Instruction::DUP3,
+ u256(1),
+ Instruction::ADD,
+ Instruction::SSTORE // store different value at "DUP1"+1
+ };
+ checkCSE(input, {
+ u256(2),
+ Instruction::DUP2,
+ Instruction::ADD,
+ Instruction::SLOAD,
+ u256(0x90),
+ u256(1),
+ Instruction::DUP4,
+ Instruction::ADD,
+ Instruction::SSTORE
+ });
+}
+
+BOOST_AUTO_TEST_CASE(cse_interleaved_memory_at_known_location_offset)
+{
+ // stores and reads to/from two locations which are known to be different,
+ // should not optimize away the first store, because the location overlaps with the load,
+ // but it should optimize away the second, because we know that the location is different by 32
+ AssemblyItems input{
+ u256(0x50),
+ Instruction::DUP2,
+ u256(2),
+ Instruction::ADD,
+ Instruction::MSTORE, // ["DUP1"+2] = 0x50
+ u256(0x60),
+ Instruction::DUP2,
+ u256(32),
+ Instruction::ADD,
+ Instruction::MSTORE, // ["DUP1"+32] = 0x60
+ Instruction::DUP1,
+ Instruction::MLOAD, // read from "DUP1"
+ u256(0x70),
+ Instruction::DUP3,
+ u256(32),
+ Instruction::ADD,
+ Instruction::MSTORE, // ["DUP1"+32] = 0x70
+ u256(0x80),
+ Instruction::DUP3,
+ u256(2),
+ Instruction::ADD,
+ Instruction::MSTORE, // ["DUP1"+2] = 0x80
+ };
+ // If the actual code changes too much, we could also simply check that the output contains
+ // exactly 3 MSTORE and exactly 1 MLOAD instruction.
+ checkCSE(input, {
+ u256(0x50),
+ u256(2),
+ Instruction::DUP3,
+ Instruction::ADD,
+ Instruction::SWAP1,
+ Instruction::DUP2,
+ Instruction::MSTORE, // ["DUP1"+2] = 0x50
+ Instruction::DUP2,
+ Instruction::MLOAD, // read from "DUP1"
+ u256(0x70),
+ u256(32),
+ Instruction::DUP5,
+ Instruction::ADD,
+ Instruction::MSTORE, // ["DUP1"+32] = 0x70
+ u256(0x80),
+ Instruction::SWAP1,
+ Instruction::SWAP2,
+ Instruction::MSTORE // ["DUP1"+2] = 0x80
+ });
+}
+
+BOOST_AUTO_TEST_CASE(cse_deep_stack)
+{
+ AssemblyItems input{
+ Instruction::ADD,
+ Instruction::SWAP1,
+ Instruction::POP,
+ Instruction::SWAP8,
+ Instruction::POP,
+ Instruction::SWAP8,
+ Instruction::POP,
+ Instruction::SWAP8,
+ Instruction::SWAP5,
+ Instruction::POP,
+ Instruction::POP,
+ Instruction::POP,
+ Instruction::POP,
+ Instruction::POP,
+ };
+ checkCSE(input, {
+ Instruction::SWAP4,
+ Instruction::SWAP12,
+ Instruction::SWAP3,
+ Instruction::SWAP11,
+ Instruction::POP,
+ Instruction::SWAP1,
+ Instruction::SWAP3,
+ Instruction::ADD,
+ Instruction::SWAP8,
+ Instruction::POP,
+ Instruction::SWAP6,
+ Instruction::POP,
+ Instruction::POP,
+ Instruction::POP,
+ Instruction::POP,
+ Instruction::POP,
+ Instruction::POP,
+ });
+}
+
+BOOST_AUTO_TEST_CASE(cse_jumpi_no_jump)
+{
+ AssemblyItems input{
+ u256(0),
+ u256(1),
+ Instruction::DUP2,
+ AssemblyItem(PushTag, 1),
+ Instruction::JUMPI
+ };
+ checkCSE(input, {
+ u256(0),
+ u256(1)
+ });
+}
+
+BOOST_AUTO_TEST_CASE(cse_jumpi_jump)
+{
+ AssemblyItems input{
+ u256(1),
+ u256(1),
+ Instruction::DUP2,
+ AssemblyItem(PushTag, 1),
+ Instruction::JUMPI
+ };
+ checkCSE(input, {
+ u256(1),
+ Instruction::DUP1,
+ AssemblyItem(PushTag, 1),
+ Instruction::JUMP
+ });
+}
+
+BOOST_AUTO_TEST_CASE(cse_empty_sha3)
+{
+ AssemblyItems input{
+ u256(0),
+ Instruction::DUP2,
+ Instruction::SHA3
+ };
+ checkCSE(input, {
+ u256(sha3(bytesConstRef()))
+ });
+}
+
+BOOST_AUTO_TEST_CASE(cse_partial_sha3)
+{
+ AssemblyItems input{
+ u256(0xabcd) << (256 - 16),
+ u256(0),
+ Instruction::MSTORE,
+ u256(2),
+ u256(0),
+ Instruction::SHA3
+ };
+ checkCSE(input, {
+ u256(0xabcd) << (256 - 16),
+ u256(0),
+ Instruction::MSTORE,
+ u256(sha3(bytes{0xab, 0xcd}))
+ });
+}
+
+BOOST_AUTO_TEST_CASE(cse_sha3_twice_same_location)
+{
+ // sha3 twice from same dynamic location
+ AssemblyItems input{
+ Instruction::DUP2,
+ Instruction::DUP1,
+ Instruction::MSTORE,
+ u256(64),
+ Instruction::DUP2,
+ Instruction::SHA3,
+ u256(64),
+ Instruction::DUP3,
+ Instruction::SHA3
+ };
+ checkCSE(input, {
+ Instruction::DUP2,
+ Instruction::DUP1,
+ Instruction::MSTORE,
+ u256(64),
+ Instruction::DUP2,
+ Instruction::SHA3,
+ Instruction::DUP1
+ });
+}
+
+BOOST_AUTO_TEST_CASE(cse_sha3_twice_same_content)
+{
+ // sha3 twice from different dynamic location but with same content
+ AssemblyItems input{
+ Instruction::DUP1,
+ u256(0x80),
+ Instruction::MSTORE, // m[128] = DUP1
+ u256(0x20),
+ u256(0x80),
+ Instruction::SHA3, // sha3(m[128..(128+32)])
+ Instruction::DUP2,
+ u256(12),
+ Instruction::MSTORE, // m[12] = DUP1
+ u256(0x20),
+ u256(12),
+ Instruction::SHA3 // sha3(m[12..(12+32)])
+ };
+ checkCSE(input, {
+ u256(0x80),
+ Instruction::DUP2,
+ Instruction::DUP2,
+ Instruction::MSTORE,
+ u256(0x20),
+ Instruction::SWAP1,
+ Instruction::SHA3,
+ u256(12),
+ Instruction::DUP3,
+ Instruction::SWAP1,
+ Instruction::MSTORE,
+ Instruction::DUP1
+ });
+}
+
+BOOST_AUTO_TEST_CASE(cse_sha3_twice_same_content_dynamic_store_in_between)
+{
+ // sha3 twice from different dynamic location but with same content,
+ // dynamic mstore in between, which forces us to re-calculate the sha3
+ AssemblyItems input{
+ u256(0x80),
+ Instruction::DUP2,
+ Instruction::DUP2,
+ Instruction::MSTORE, // m[128] = DUP1
+ u256(0x20),
+ Instruction::DUP1,
+ Instruction::DUP3,
+ Instruction::SHA3, // sha3(m[128..(128+32)])
+ u256(12),
+ Instruction::DUP5,
+ Instruction::DUP2,
+ Instruction::MSTORE, // m[12] = DUP1
+ Instruction::DUP12,
+ Instruction::DUP14,
+ Instruction::MSTORE, // destroys memory knowledge
+ Instruction::SWAP2,
+ Instruction::SWAP1,
+ Instruction::SWAP2,
+ Instruction::SHA3 // sha3(m[12..(12+32)])
+ };
+ checkCSE(input, input);
+}
+
+BOOST_AUTO_TEST_CASE(cse_sha3_twice_same_content_noninterfering_store_in_between)
+{
+ // sha3 twice from different dynamic location but with same content,
+ // dynamic mstore in between, but does not force us to re-calculate the sha3
+ AssemblyItems input{
+ u256(0x80),
+ Instruction::DUP2,
+ Instruction::DUP2,
+ Instruction::MSTORE, // m[128] = DUP1
+ u256(0x20),
+ Instruction::DUP1,
+ Instruction::DUP3,
+ Instruction::SHA3, // sha3(m[128..(128+32)])
+ u256(12),
+ Instruction::DUP5,
+ Instruction::DUP2,
+ Instruction::MSTORE, // m[12] = DUP1
+ Instruction::DUP12,
+ u256(12 + 32),
+ Instruction::MSTORE, // does not destoy memory knowledge
+ Instruction::DUP13,
+ u256(128 - 32),
+ Instruction::MSTORE, // does not destoy memory knowledge
+ u256(0x20),
+ u256(12),
+ Instruction::SHA3 // sha3(m[12..(12+32)])
+ };
+ // if this changes too often, only count the number of SHA3 and MSTORE instructions
+ AssemblyItems output = getCSE(input);
+ BOOST_CHECK_EQUAL(4, count(output.begin(), output.end(), AssemblyItem(Instruction::MSTORE)));
+ BOOST_CHECK_EQUAL(1, count(output.begin(), output.end(), AssemblyItem(Instruction::SHA3)));
+}
+
+BOOST_AUTO_TEST_CASE(control_flow_graph_remove_unused)
+{
+ // remove parts of the code that are unused
+ AssemblyItems input{
+ AssemblyItem(PushTag, 1),
+ Instruction::JUMP,
+ u256(7),
+ AssemblyItem(Tag, 1),
+ };
+ checkCFG(input, {});
+}
+
+BOOST_AUTO_TEST_CASE(control_flow_graph_remove_unused_loop)
+{
+ AssemblyItems input{
+ AssemblyItem(PushTag, 3),
+ Instruction::JUMP,
+ AssemblyItem(Tag, 1),
+ u256(7),
+ AssemblyItem(PushTag, 2),
+ Instruction::JUMP,
+ AssemblyItem(Tag, 2),
+ u256(8),
+ AssemblyItem(PushTag, 1),
+ Instruction::JUMP,
+ AssemblyItem(Tag, 3),
+ u256(11)
+ };
+ checkCFG(input, {u256(11)});
+}
+
+BOOST_AUTO_TEST_CASE(control_flow_graph_reconnect_single_jump_source)
+{
+ // move code that has only one unconditional jump source
+ AssemblyItems input{
+ u256(1),
+ AssemblyItem(PushTag, 1),
+ Instruction::JUMP,
+ AssemblyItem(Tag, 2),
+ u256(2),
+ AssemblyItem(PushTag, 3),
+ Instruction::JUMP,
+ AssemblyItem(Tag, 1),
+ u256(3),
+ AssemblyItem(PushTag, 2),
+ Instruction::JUMP,
+ AssemblyItem(Tag, 3),
+ u256(4),
+ };
+ checkCFG(input, {u256(1), u256(3), u256(2), u256(4)});
+}
+
+BOOST_AUTO_TEST_CASE(control_flow_graph_do_not_remove_returned_to)
+{
+ // do not remove parts that are "returned to"
+ AssemblyItems input{
+ AssemblyItem(PushTag, 1),
+ AssemblyItem(PushTag, 2),
+ Instruction::JUMP,
+ AssemblyItem(Tag, 2),
+ Instruction::JUMP,
+ AssemblyItem(Tag, 1),
+ u256(2)
+ };
+ checkCFG(input, {u256(2)});
+}
+
+BOOST_AUTO_TEST_SUITE_END()
+
+}
+}
+} // end namespaces
+
+#endif