diff options
author | chriseth <chris@ethereum.org> | 2018-01-18 02:18:42 +0800 |
---|---|---|
committer | chriseth <chris@ethereum.org> | 2018-02-07 05:51:30 +0800 |
commit | b8074cdf788ee1cae862929c0428a95cc5248269 (patch) | |
tree | 0a89ac871bc0cc23cfe5d6f6075e947ee4d0ec5b /libevmasm/RuleList.h | |
parent | 491d6d3e0c131bcafc10d4bc86df0d6833955cd4 (diff) | |
download | dexon-solidity-b8074cdf788ee1cae862929c0428a95cc5248269.tar dexon-solidity-b8074cdf788ee1cae862929c0428a95cc5248269.tar.gz dexon-solidity-b8074cdf788ee1cae862929c0428a95cc5248269.tar.bz2 dexon-solidity-b8074cdf788ee1cae862929c0428a95cc5248269.tar.lz dexon-solidity-b8074cdf788ee1cae862929c0428a95cc5248269.tar.xz dexon-solidity-b8074cdf788ee1cae862929c0428a95cc5248269.tar.zst dexon-solidity-b8074cdf788ee1cae862929c0428a95cc5248269.zip |
Add flag to indicate whether it can be applied to expressions with side-effects.
Diffstat (limited to 'libevmasm/RuleList.h')
-rw-r--r-- | libevmasm/RuleList.h | 169 |
1 files changed, 92 insertions, 77 deletions
diff --git a/libevmasm/RuleList.h b/libevmasm/RuleList.h index d95b014d..70a3ef71 100644 --- a/libevmasm/RuleList.h +++ b/libevmasm/RuleList.h @@ -26,6 +26,8 @@ #include <libevmasm/Instruction.h> +#include <libdevcore/CommonData.h> + namespace dev { namespace solidity @@ -43,11 +45,12 @@ template <class S> S modWorkaround(S const& _a, S const& _b) /// @returns a list of simplification rules given certain match placeholders. /// A, B and C should represent constants, X and Y arbitrary expressions. -/// As the simplification can remove instructions, care has to be taken if multiple -/// non-constant expressions are used. The simplifications should not change the -/// order of operations, though. +/// The third element in the tuple is a boolean flag that indicates whether +/// any non-constant elements in the pattern are removed by applying it. +/// The simplifications should neven change the order of evaluation of +/// arbitrary operations, though. template <class Pattern> -std::vector<std::pair<Pattern, std::function<Pattern()>>> simplificationRuleList( +std::vector<std::tuple<Pattern, std::function<Pattern()>, bool>> simplificationRuleList( Pattern A, Pattern B, Pattern C, @@ -55,78 +58,78 @@ std::vector<std::pair<Pattern, std::function<Pattern()>>> simplificationRuleList Pattern Y ) { - std::vector<std::pair<Pattern, std::function<Pattern()>>> rules; - rules += std::vector<std::pair<Pattern, std::function<Pattern()>>>{ + std::vector<std::tuple<Pattern, std::function<Pattern()>, bool>> rules; + rules += std::vector<std::tuple<Pattern, std::function<Pattern()>, bool>>{ // arithmetics on constants - {{Instruction::ADD, {A, B}}, [=]{ return A.d() + B.d(); }}, - {{Instruction::MUL, {A, B}}, [=]{ return A.d() * B.d(); }}, - {{Instruction::SUB, {A, B}}, [=]{ return A.d() - B.d(); }}, - {{Instruction::DIV, {A, B}}, [=]{ return B.d() == 0 ? 0 : divWorkaround(A.d(), B.d()); }}, - {{Instruction::SDIV, {A, B}}, [=]{ return B.d() == 0 ? 0 : s2u(divWorkaround(u2s(A.d()), u2s(B.d()))); }}, - {{Instruction::MOD, {A, B}}, [=]{ return B.d() == 0 ? 0 : modWorkaround(A.d(), B.d()); }}, - {{Instruction::SMOD, {A, B}}, [=]{ return B.d() == 0 ? 0 : s2u(modWorkaround(u2s(A.d()), u2s(B.d()))); }}, - {{Instruction::EXP, {A, B}}, [=]{ return u256(boost::multiprecision::powm(bigint(A.d()), bigint(B.d()), bigint(1) << 256)); }}, - {{Instruction::NOT, {A}}, [=]{ return ~A.d(); }}, - {{Instruction::LT, {A, B}}, [=]() -> u256 { return A.d() < B.d() ? 1 : 0; }}, - {{Instruction::GT, {A, B}}, [=]() -> u256 { return A.d() > B.d() ? 1 : 0; }}, - {{Instruction::SLT, {A, B}}, [=]() -> u256 { return u2s(A.d()) < u2s(B.d()) ? 1 : 0; }}, - {{Instruction::SGT, {A, B}}, [=]() -> u256 { return u2s(A.d()) > u2s(B.d()) ? 1 : 0; }}, - {{Instruction::EQ, {A, B}}, [=]() -> u256 { return A.d() == B.d() ? 1 : 0; }}, - {{Instruction::ISZERO, {A}}, [=]() -> u256 { return A.d() == 0 ? 1 : 0; }}, - {{Instruction::AND, {A, B}}, [=]{ return A.d() & B.d(); }}, - {{Instruction::OR, {A, B}}, [=]{ return A.d() | B.d(); }}, - {{Instruction::XOR, {A, B}}, [=]{ return A.d() ^ B.d(); }}, - {{Instruction::BYTE, {A, B}}, [=]{ return A.d() >= 32 ? 0 : (B.d() >> unsigned(8 * (31 - A.d()))) & 0xff; }}, - {{Instruction::ADDMOD, {A, B, C}}, [=]{ return C.d() == 0 ? 0 : u256((bigint(A.d()) + bigint(B.d())) % C.d()); }}, - {{Instruction::MULMOD, {A, B, C}}, [=]{ return C.d() == 0 ? 0 : u256((bigint(A.d()) * bigint(B.d())) % C.d()); }}, - {{Instruction::MULMOD, {A, B, C}}, [=]{ return A.d() * B.d(); }}, + {{Instruction::ADD, {A, B}}, [=]{ return A.d() + B.d(); }, false}, + {{Instruction::MUL, {A, B}}, [=]{ return A.d() * B.d(); }, false}, + {{Instruction::SUB, {A, B}}, [=]{ return A.d() - B.d(); }, false}, + {{Instruction::DIV, {A, B}}, [=]{ return B.d() == 0 ? 0 : divWorkaround(A.d(), B.d()); }, false}, + {{Instruction::SDIV, {A, B}}, [=]{ return B.d() == 0 ? 0 : s2u(divWorkaround(u2s(A.d()), u2s(B.d()))); }, false}, + {{Instruction::MOD, {A, B}}, [=]{ return B.d() == 0 ? 0 : modWorkaround(A.d(), B.d()); }, false}, + {{Instruction::SMOD, {A, B}}, [=]{ return B.d() == 0 ? 0 : s2u(modWorkaround(u2s(A.d()), u2s(B.d()))); }, false}, + {{Instruction::EXP, {A, B}}, [=]{ return u256(boost::multiprecision::powm(bigint(A.d()), bigint(B.d()), bigint(1) << 256)); }, false}, + {{Instruction::NOT, {A}}, [=]{ return ~A.d(); }, false}, + {{Instruction::LT, {A, B}}, [=]() -> u256 { return A.d() < B.d() ? 1 : 0; }, false}, + {{Instruction::GT, {A, B}}, [=]() -> u256 { return A.d() > B.d() ? 1 : 0; }, false}, + {{Instruction::SLT, {A, B}}, [=]() -> u256 { return u2s(A.d()) < u2s(B.d()) ? 1 : 0; }, false}, + {{Instruction::SGT, {A, B}}, [=]() -> u256 { return u2s(A.d()) > u2s(B.d()) ? 1 : 0; }, false}, + {{Instruction::EQ, {A, B}}, [=]() -> u256 { return A.d() == B.d() ? 1 : 0; }, false}, + {{Instruction::ISZERO, {A}}, [=]() -> u256 { return A.d() == 0 ? 1 : 0; }, false}, + {{Instruction::AND, {A, B}}, [=]{ return A.d() & B.d(); }, false}, + {{Instruction::OR, {A, B}}, [=]{ return A.d() | B.d(); }, false}, + {{Instruction::XOR, {A, B}}, [=]{ return A.d() ^ B.d(); }, false}, + {{Instruction::BYTE, {A, B}}, [=]{ return A.d() >= 32 ? 0 : (B.d() >> unsigned(8 * (31 - A.d()))) & 0xff; }, false}, + {{Instruction::ADDMOD, {A, B, C}}, [=]{ return C.d() == 0 ? 0 : u256((bigint(A.d()) + bigint(B.d())) % C.d()); }, false}, + {{Instruction::MULMOD, {A, B, C}}, [=]{ return C.d() == 0 ? 0 : u256((bigint(A.d()) * bigint(B.d())) % C.d()); }, false}, + {{Instruction::MULMOD, {A, B, C}}, [=]{ return A.d() * B.d(); }, false}, {{Instruction::SIGNEXTEND, {A, B}}, [=]() -> u256 { if (A.d() >= 31) return B.d(); unsigned testBit = unsigned(A.d()) * 8 + 7; u256 mask = (u256(1) << testBit) - 1; return u256(boost::multiprecision::bit_test(B.d(), testBit) ? B.d() | ~mask : B.d() & mask); - }}, + }, false}, // invariants involving known constants (commutative instructions will be checked with swapped operants too) - {{Instruction::ADD, {X, 0}}, [=]{ return X; }}, - {{Instruction::SUB, {X, 0}}, [=]{ return X; }}, - {{Instruction::MUL, {X, 0}}, [=]{ return u256(0); }}, - {{Instruction::MUL, {X, 1}}, [=]{ return X; }}, - {{Instruction::DIV, {X, 0}}, [=]{ return u256(0); }}, - {{Instruction::DIV, {0, X}}, [=]{ return u256(0); }}, - {{Instruction::DIV, {X, 1}}, [=]{ return X; }}, - {{Instruction::SDIV, {X, 0}}, [=]{ return u256(0); }}, - {{Instruction::SDIV, {0, X}}, [=]{ return u256(0); }}, - {{Instruction::SDIV, {X, 1}}, [=]{ return X; }}, - {{Instruction::AND, {X, ~u256(0)}}, [=]{ return X; }}, - {{Instruction::AND, {X, 0}}, [=]{ return u256(0); }}, - {{Instruction::OR, {X, 0}}, [=]{ return X; }}, - {{Instruction::OR, {X, ~u256(0)}}, [=]{ return ~u256(0); }}, - {{Instruction::XOR, {X, 0}}, [=]{ return X; }}, - {{Instruction::MOD, {X, 0}}, [=]{ return u256(0); }}, - {{Instruction::MOD, {0, X}}, [=]{ return u256(0); }}, - {{Instruction::EQ, {X, 0}}, [=]() -> Pattern { return {Instruction::ISZERO, {X}}; } }, + {{Instruction::ADD, {X, 0}}, [=]{ return X; }, false}, + {{Instruction::SUB, {X, 0}}, [=]{ return X; }, false}, + {{Instruction::MUL, {X, 0}}, [=]{ return u256(0); }, true}, + {{Instruction::MUL, {X, 1}}, [=]{ return X; }, false}, + {{Instruction::DIV, {X, 0}}, [=]{ return u256(0); }, true}, + {{Instruction::DIV, {0, X}}, [=]{ return u256(0); }, true}, + {{Instruction::DIV, {X, 1}}, [=]{ return X; }, false}, + {{Instruction::SDIV, {X, 0}}, [=]{ return u256(0); }, true}, + {{Instruction::SDIV, {0, X}}, [=]{ return u256(0); }, true}, + {{Instruction::SDIV, {X, 1}}, [=]{ return X; }, false}, + {{Instruction::AND, {X, ~u256(0)}}, [=]{ return X; }, false}, + {{Instruction::AND, {X, 0}}, [=]{ return u256(0); }, true}, + {{Instruction::OR, {X, 0}}, [=]{ return X; }, false}, + {{Instruction::OR, {X, ~u256(0)}}, [=]{ return ~u256(0); }, true}, + {{Instruction::XOR, {X, 0}}, [=]{ return X; }, false}, + {{Instruction::MOD, {X, 0}}, [=]{ return u256(0); }, true}, + {{Instruction::MOD, {0, X}}, [=]{ return u256(0); }, true}, + {{Instruction::EQ, {X, 0}}, [=]() -> Pattern { return {Instruction::ISZERO, {X}}; }, false }, // operations involving an expression and itself - {{Instruction::AND, {X, X}}, [=]{ return X; }}, - {{Instruction::OR, {X, X}}, [=]{ return X; }}, - {{Instruction::XOR, {X, X}}, [=]{ return u256(0); }}, - {{Instruction::SUB, {X, X}}, [=]{ return u256(0); }}, - {{Instruction::EQ, {X, X}}, [=]{ return u256(1); }}, - {{Instruction::LT, {X, X}}, [=]{ return u256(0); }}, - {{Instruction::SLT, {X, X}}, [=]{ return u256(0); }}, - {{Instruction::GT, {X, X}}, [=]{ return u256(0); }}, - {{Instruction::SGT, {X, X}}, [=]{ return u256(0); }}, - {{Instruction::MOD, {X, X}}, [=]{ return u256(0); }}, + {{Instruction::AND, {X, X}}, [=]{ return X; }, true}, + {{Instruction::OR, {X, X}}, [=]{ return X; }, true}, + {{Instruction::XOR, {X, X}}, [=]{ return u256(0); }, true}, + {{Instruction::SUB, {X, X}}, [=]{ return u256(0); }, true}, + {{Instruction::EQ, {X, X}}, [=]{ return u256(1); }, true}, + {{Instruction::LT, {X, X}}, [=]{ return u256(0); }, true}, + {{Instruction::SLT, {X, X}}, [=]{ return u256(0); }, true}, + {{Instruction::GT, {X, X}}, [=]{ return u256(0); }, true}, + {{Instruction::SGT, {X, X}}, [=]{ return u256(0); }, true}, + {{Instruction::MOD, {X, X}}, [=]{ return u256(0); }, true}, // logical instruction combinations - {{Instruction::NOT, {{Instruction::NOT, {X}}}}, [=]{ return X; }}, - {{Instruction::XOR, {{{X}, {Instruction::XOR, {X, Y}}}}}, [=]{ return Y; }}, - {{Instruction::OR, {{{X}, {Instruction::AND, {X, Y}}}}}, [=]{ return X; }}, - {{Instruction::AND, {{{X}, {Instruction::OR, {X, Y}}}}}, [=]{ return X; }}, - {{Instruction::AND, {{{X}, {Instruction::NOT, {X}}}}}, [=]{ return u256(0); }}, - {{Instruction::OR, {{{X}, {Instruction::NOT, {X}}}}}, [=]{ return ~u256(0); }}, + {{Instruction::NOT, {{Instruction::NOT, {X}}}}, [=]{ return X; }, false}, + {{Instruction::XOR, {{{X}, {Instruction::XOR, {X, Y}}}}}, [=]{ return Y; }, true}, + {{Instruction::OR, {{{X}, {Instruction::AND, {X, Y}}}}}, [=]{ return X; }, true}, + {{Instruction::AND, {{{X}, {Instruction::OR, {X, Y}}}}}, [=]{ return X; }, true}, + {{Instruction::AND, {{{X}, {Instruction::NOT, {X}}}}}, [=]{ return u256(0); }, true}, + {{Instruction::OR, {{{X}, {Instruction::NOT, {X}}}}}, [=]{ return ~u256(0); }, true}, }; // Double negation of opcodes with binary result @@ -139,17 +142,20 @@ std::vector<std::pair<Pattern, std::function<Pattern()>>> simplificationRuleList }) rules.push_back({ {Instruction::ISZERO, {{Instruction::ISZERO, {{op, {X, Y}}}}}}, - [=]() -> Pattern { return {op, {X, Y}}; } + [=]() -> Pattern { return {op, {X, Y}}; }, + false }); rules.push_back({ {Instruction::ISZERO, {{Instruction::ISZERO, {{Instruction::ISZERO, {X}}}}}}, - [=]() -> Pattern { return {Instruction::ISZERO, {X}}; } + [=]() -> Pattern { return {Instruction::ISZERO, {X}}; }, + false }); rules.push_back({ {Instruction::ISZERO, {{Instruction::XOR, {X, Y}}}}, - [=]() -> Pattern { return { Instruction::EQ, {X, Y} }; } + [=]() -> Pattern { return { Instruction::EQ, {X, Y} }; }, + false }); // Associative operations @@ -166,45 +172,54 @@ std::vector<std::pair<Pattern, std::function<Pattern()>>> simplificationRuleList // Moving constants to the outside, order matters here! // we need actions that return expressions (or patterns?) here, and we need also reversed rules // (X+A)+B -> X+(A+B) - rules += std::vector<std::pair<Pattern, std::function<Pattern()>>>{{ + rules += std::vector<std::tuple<Pattern, std::function<Pattern()>, bool>>{{ {op, {{op, {X, A}}, B}}, - [=]() -> Pattern { return {op, {X, fun(A.d(), B.d())}}; } + [=]() -> Pattern { return {op, {X, fun(A.d(), B.d())}}; }, + false }, { // X+(Y+A) -> (X+Y)+A {op, {{op, {X, A}}, Y}}, - [=]() -> Pattern { return {op, {{op, {X, Y}}, A}}; } + [=]() -> Pattern { return {op, {{op, {X, Y}}, A}}; }, + false }, { // For now, we still need explicit commutativity for the inner pattern {op, {{op, {A, X}}, B}}, - [=]() -> Pattern { return {op, {X, fun(A.d(), B.d())}}; } + [=]() -> Pattern { return {op, {X, fun(A.d(), B.d())}}; }, + false }, { {op, {{op, {A, X}}, Y}}, - [=]() -> Pattern { return {op, {{op, {X, Y}}, A}}; } + [=]() -> Pattern { return {op, {{op, {X, Y}}, A}}; }, + false }}; } // move constants across subtractions - rules += std::vector<std::pair<Pattern, std::function<Pattern()>>>{ + rules += std::vector<std::tuple<Pattern, std::function<Pattern()>, bool>>{ { // X - A -> X + (-A) {Instruction::SUB, {X, A}}, - [=]() -> Pattern { return {Instruction::ADD, {X, 0 - A.d()}}; } + [=]() -> Pattern { return {Instruction::ADD, {X, 0 - A.d()}}; }, + false }, { // (X + A) - Y -> (X - Y) + A {Instruction::SUB, {{Instruction::ADD, {X, A}}, Y}}, - [=]() -> Pattern { return {Instruction::ADD, {{Instruction::SUB, {X, Y}}, A}}; } + [=]() -> Pattern { return {Instruction::ADD, {{Instruction::SUB, {X, Y}}, A}}; }, + false }, { // (A + X) - Y -> (X - Y) + A {Instruction::SUB, {{Instruction::ADD, {A, X}}, Y}}, - [=]() -> Pattern { return {Instruction::ADD, {{Instruction::SUB, {X, Y}}, A}}; } + [=]() -> Pattern { return {Instruction::ADD, {{Instruction::SUB, {X, Y}}, A}}; }, + false }, { // X - (Y + A) -> (X - Y) + (-A) {Instruction::SUB, {X, {Instruction::ADD, {Y, A}}}}, - [=]() -> Pattern { return {Instruction::ADD, {{Instruction::SUB, {X, Y}}, 0 - A.d()}}; } + [=]() -> Pattern { return {Instruction::ADD, {{Instruction::SUB, {X, Y}}, 0 - A.d()}}; }, + false }, { // X - (A + Y) -> (X - Y) + (-A) {Instruction::SUB, {X, {Instruction::ADD, {A, Y}}}}, - [=]() -> Pattern { return {Instruction::ADD, {{Instruction::SUB, {X, Y}}, 0 - A.d()}}; } + [=]() -> Pattern { return {Instruction::ADD, {{Instruction::SUB, {X, Y}}, 0 - A.d()}}; }, + false } }; return rules; |