aboutsummaryrefslogtreecommitdiffstats
path: root/docs
diff options
context:
space:
mode:
authorchriseth <chris@ethereum.org>2017-04-04 20:20:43 +0800
committerAlex Beregszaszi <alex@rtfs.hu>2017-11-22 10:45:07 +0800
commitf73660423ab2a2ff340624fcbbb67f891ace95a2 (patch)
tree0974a3b3266039aaceb47342881ddaa72b550c94 /docs
parent243002e5f3e491b91f017e3ac1371ed45a716f3b (diff)
downloaddexon-solidity-f73660423ab2a2ff340624fcbbb67f891ace95a2.tar
dexon-solidity-f73660423ab2a2ff340624fcbbb67f891ace95a2.tar.gz
dexon-solidity-f73660423ab2a2ff340624fcbbb67f891ace95a2.tar.bz2
dexon-solidity-f73660423ab2a2ff340624fcbbb67f891ace95a2.tar.lz
dexon-solidity-f73660423ab2a2ff340624fcbbb67f891ace95a2.tar.xz
dexon-solidity-f73660423ab2a2ff340624fcbbb67f891ace95a2.tar.zst
dexon-solidity-f73660423ab2a2ff340624fcbbb67f891ace95a2.zip
First take in formal specification.
Diffstat (limited to 'docs')
-rw-r--r--docs/assembly.rst107
1 files changed, 94 insertions, 13 deletions
diff --git a/docs/assembly.rst b/docs/assembly.rst
index ce45c55c..a06c616d 100644
--- a/docs/assembly.rst
+++ b/docs/assembly.rst
@@ -6,17 +6,17 @@ Joyfully Universal Language for (Inline) Assembly
.. index:: ! assembly, ! asm, ! evmasm
-Julia is an intermediate language that can compile to various different backends
+JULIA is an intermediate language that can compile to various different backends
(EVM 1.0, EVM 1.5 and eWASM are planned).
Because of that, it is designed to be as featureless as possible.
It can already be used for "inline assembly" inside Solidity and
-future versions of the Solidity compiler will even use Julia as intermediate
-language. It should also be easy to build high-level optimizer stages for Julia.
+future versions of the Solidity compiler will even use JULIA as intermediate
+language. It should also be easy to build high-level optimizer stages for JULIA.
-The core components of Julia are functions, blocks, variables, literals,
+The core components of JULIA are functions, blocks, variables, literals,
for-loops, switch-statements, expressions and assignments to variables.
-Julia in itself does not even provide operators. If the EVM is targeted,
+JULIA in itself does not even provide operators. If the EVM is targeted,
opcodes will be available as built-in functions, but they can be reimplemented
if the backend changes.
@@ -55,7 +55,7 @@ and ``add`` to be available.
}
}
-Specification of Julia
+Specification of JULIA
======================
Grammar::
@@ -69,7 +69,7 @@ Grammar::
Expression |
Switch |
ForLoop |
- 'break' | 'continue'
+ BreakContinue |
SubAssembly
FunctionDefinition =
'function' Identifier '(' IdentifierList? ')'
@@ -79,17 +79,19 @@ Grammar::
Assignment =
IdentifierOrList ':=' Expression
Expression =
- Identifier | Literal | FunctionCall
+ FunctionCall | Identifier | Literal
Switch =
'switch' Expression Case* ( 'default' ':' Block )?
Case =
'case' Expression ':' Block
ForLoop =
'for' Block Expression Block Block
+ BreakContinue =
+ 'break' | 'continue'
SubAssembly =
'assembly' Identifier Block
FunctionCall =
- Identifier '(' ( AssemblyItem ( ',' AssemblyItem )* )? ')'
+ Identifier '(' ( Expression ( ',' Expression )* )? ')'
IdentifierOrList = Identifier | '(' IdentifierList ')'
Identifier = [a-zA-Z_$] [a-zA-Z_0-9]*
IdentifierList = Identifier ( ',' Identifier)*
@@ -101,16 +103,95 @@ Grammar::
HexNumber = '0x' [0-9a-fA-F]+
DecimalNumber = [0-9]+
+Restrictions on the Grammar
+---------------------------
+
+Scopes in JULIA are tied to Blocks and all declarations
+(``FunctionDefinition``, ``VariableDeclaration`` and ``SubAssembly``)
+introduce new identifiers into these scopes. Shadowing is disallowed
+
+Talk about identifiers across functions etc
+
+
+Restriction for Expression: Statements have to return empty tuple
+Function arguments have to be single item
+
+Restriction for VariableDeclaration and Assignment: Number of elements left and right needs to be the same
+continue and break only in for loop
+
+Literals have to fit 32 bytes
+
| 'dataSize' '(' Identifier ')' |
LinkerSymbol |
'bytecodeSize' |
-Restriction for Expression: Functions can only return single item,
-top level has to return nothing.
-Restriction for VariableDeclaration and Assignment: Number of elements left and right needs to be the same
-continue and break only in for loop
+
+Formal Specification
+--------------------
+
+We formally specify JULIA by providing an evaluation function E overloaded
+on the various nodes of the AST. Any functions can have side effects, so
+E takes a state objects and the actual argument and also returns new
+state objects and new arguments. There is a global state object
+(which in the context of the EVM is the memory, storage and state of the
+blockchain) and a local state object (the state of local variables, i.e. a
+segment of the stack in the EVM).
+
+The the evaluation function E takes a global state, a local state and
+a node of the AST and returns a new global state, a new local state
+and a value (if the AST node is an expression).
+
+We use sequence numbers as a shorthand for the order of evaluation
+and how state is forwarded. For example, ``E2(x), E1(y)`` is a shorthand
+for
+
+For ``(S1, z) = E(S, y)`` let ``(S2, w) = E(S1, x)``. TODO
+
+.. code::
+ E(G, L, <{St1, ..., Stn}>: Block) =
+ let L' be a copy of L that adds a new inner scope which contains
+ all functions and variables declared in the block (but not its sub-blocks)
+ variables are marked inactive for now
+ TODO: more formal
+ G1, L'1 = E(G, L', St1)
+ G2, L'2 = E(G1, L'1, St2)
+ ...
+ Gn, L'n = E(G(n-1), L'(n-1), Stn)
+ let L'' be a copy of L'n where the innermost scope is removed
+ Gn, L''
+ E(G, L, <function fname (param1, ..., paramn) -> (ret1, ..., retm) block>: FunctionDefinition) =
+ G, L
+ E(G, L, <let (var1, ..., varn) := value>: VariableDeclaration) =
+ E(G, L, <(var1, ..., varn) := value>: Assignment)
+ E(G, L, <(var1, ..., varn) := value>: Assignment) =
+ let G', L', v1, ..., vn = E(G, L, value)
+ let L'' be a copy of L' where L'[vi] = vi for i = 1, ..., n
+ G, L''
+ E(G, L, name: Identifier) =
+ G, L, L[name]
+ E(G, L, fname(arg1, ..., argn): FunctionCall) =
+ G1, L1, vn = E(G, L, argn)
+ ...
+ G(n-1), L(n-1), v2 = E(G(n-2), L(n-2), arg2)
+ Gn, Ln, v1 = E(G(n-1), L(n-1), arg1)
+ Let <function fname (param1, ..., paramn) -> (ret1, ..., retm) block>
+ be the function L[fname].
+ Let L' be a copy of L that does not contain any variables in any scope,
+ but which has a new innermost scope such that
+ L'[parami] = vi and L'[reti] = 0
+ Let G'', L'', rv1, ..., rvm = E(Gn, L', block)
+ G'', Ln, rv1, ..., rvm
+ E(G, L, l: HexLiteral) = G, L, hexString(l),
+ where hexString decodes l from hex and left-aligns in into 32 bytes
+ E(G, L, l: StringLiteral) = G, L, utf8EncodeLeftAligned(l),
+ where utf8EncodeLeftAligned performs a utf8 encoding of l
+ and aligns it left into 32 bytes
+ E(G, L, n: HexNumber) = G, L, hex(n)
+ where hex is the hexadecimal decoding function
+ E(G, L, n: DecimalNumber) = G, L, dec(n),
+ where dec is the decimal decoding function
.. _inline-assembly: