/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* Unit tests for Solidity's ABI encoder.
*/
#include <functional>
#include <string>
#include <tuple>
#include <boost/test/unit_test.hpp>
#include <libsolidity/interface/Exceptions.h>
#include <test/libsolidity/SolidityExecutionFramework.h>
using namespace std;
using namespace std::placeholders;
using namespace dev::test;
namespace dev
{
namespace solidity
{
namespace test
{
#define REQUIRE_LOG_DATA(DATA) do { \
BOOST_REQUIRE_EQUAL(m_logs.size(), 1); \
BOOST_CHECK_EQUAL(m_logs[0].address, m_contractAddress); \
BOOST_CHECK_EQUAL(toHex(m_logs[0].data), toHex(DATA)); \
} while (false)
static string const NewEncoderPragma = "pragma experimental ABIEncoderV2;\n";
#define NEW_ENCODER(CODE) \
{ \
sourceCode = NewEncoderPragma + sourceCode; \
{ CODE } \
}
#define BOTH_ENCODERS(CODE) \
{ \
{ CODE } \
NEW_ENCODER(CODE) \
}
BOOST_FIXTURE_TEST_SUITE(ABIEncoderTest, SolidityExecutionFramework)
BOOST_AUTO_TEST_CASE(both_encoders_macro)
{
// This tests that the "both encoders macro" at least runs twice and
// modifies the source.
string sourceCode;
int runs = 0;
BOTH_ENCODERS(runs++;)
BOOST_CHECK(sourceCode == NewEncoderPragma);
BOOST_CHECK_EQUAL(runs, 2);
}
BOOST_AUTO_TEST_CASE(value_types)
{
string sourceCode = R"(
contract C {
event E(uint a, uint16 b, uint24 c, int24 d, bytes3 x, bool, C);
function f() {
bytes6 x = hex"1bababababa2";
bool b;
assembly { b := 7 }
C c;
assembly { c := sub(0, 5) }
E(10, uint16(uint256(-2)), uint24(0x12121212), int24(int256(-1)), bytes3(x), b, c);
}
}
)";
BOTH_ENCODERS(
compileAndRun(sourceCode);
callContractFunction("f()");
REQUIRE_LOG_DATA(encodeArgs(
10, u256(65534), u256(0x121212), u256(-1), string("\x1b\xab\xab"), true, u160(u256(-5))
));
)
}
BOOST_AUTO_TEST_CASE(string_literal)
{
string sourceCode = R"(
contract C {
event E(string, bytes20, string);
function f() {
E("abcdef", "abcde", "abcdefabcdefgehabcabcasdfjklabcdefabcedefghabcabcasdfjklabcdefabcdefghabcabcasdfjklabcdeefabcdefghabcabcasdefjklabcdefabcdefghabcabcasdfjkl");
}
}
)";
BOTH_ENCODERS(
compileAndRun(sourceCode);
callContractFunction("f()");
REQUIRE_LOG_DATA(encodeArgs(
0x60, string("abcde"), 0xa0,
6, string("abcdef"),
0x8b, string("abcdefabcdefgehabcabcasdfjklabcdefabcedefghabcabcasdfjklabcdefabcdefghabcabcasdfjklabcdeefabcdefghabcabcasdefjklabcdefabcdefghabcabcasdfjkl")
));
)
}
BOOST_AUTO_TEST_CASE(enum_type_cleanup)
{
string sourceCode = R"(
contract C {
enum E { A, B }
function f(uint x) returns (E en) {
assembly { en := x }
}
}
)";
BOTH_ENCODERS(
compileAndRun(sourceCode);
BOOST_CHECK(callContractFunction("f(uint256)", 0) == encodeArgs(0));
BOOST_CHECK(callContractFunction("f(uint256)", 1) == encodeArgs(1));
BOOST_CHECK(callContractFunction("f(uint256)", 2) == encodeArgs());
)
}
BOOST_AUTO_TEST_CASE(conversion)
{
string sourceCode = R"(
contract C {
event E(bytes4, bytes4, uint16, uint8, int16, int8);
function f() {
bytes2 x; assembly { x := 0xf1f2f3f400000000000000000000000000000000000000000000000000000000 }
uint8 a;
uint16 b = 0x1ff;
int8 c;
int16 d;
assembly { a := sub(0, 1) c := 0x0101ff d := 0xff01 }
E(10, x, a, uint8(b), c, int8(d));
}
}
)";
BOTH_ENCODERS(
compileAndRun(sourceCode);
callContractFunction("f()");
REQUIRE_LOG_DATA(encodeArgs(
string(3, 0) + string("\x0a"), string("\xf1\xf2"),
0xff, 0xff, u256(-1), u256(1)
));
)
}
BOOST_AUTO_TEST_CASE(memory_array_one_dim)
{
string sourceCode = R"(
contract C {
event E(uint a, int16[] b, uint c);
function f() {
int16[] memory x = new int16[](3);
assembly {
for { let i := 0 } lt(i, 3) { i := add(i, 1) } {
mstore(add(x, mul(add(i, 1), 0x20)), add(0xfffffffe, i))
}
}
E(10, x, 11);
}
}
)";
compileAndRun(sourceCode);
callContractFunction("f()");
// The old encoder does not clean array elements.
REQUIRE_LOG_DATA(encodeArgs(10, 0x60, 11, 3, u256("0xfffffffe"), u256("0xffffffff"), u256("0x100000000")));
compileAndRun(NewEncoderPragma + sourceCode);
callContractFunction("f()");
REQUIRE_LOG_DATA(encodeArgs(10, 0x60, 11, 3, u256(-2), u256(-1), u256(0)));
}
BOOST_AUTO_TEST_CASE(memory_array_two_dim)
{
string sourceCode = R"(
contract C {
event E(uint a, int16[][2] b, uint c);
function f() {
int16[][2] memory x;
x[0] = new int16[](3);
x[1] = new int16[](2);
x[0][0] = 7;
x[0][1] = int16(0x010203040506);
x[0][2] = -1;
x[1][0] = 4;
x[1][1] = 5;
E(10, x, 11);
}
}
)";
NEW_ENCODER(
compileAndRun(sourceCode);
callContractFunction("f()");
REQUIRE_LOG_DATA(encodeArgs(10, 0x60, 11, 0x40, 0xc0, 3, 7, 0x0506, u256(-1), 2, 4, 5));
)
}
BOOST_AUTO_TEST_CASE(memory_byte_array)
{
string sourceCode = R"(
contract C {
event E(uint a, bytes[] b, uint c);
function f() {
bytes[] memory x = new bytes[](2);
x[0] = "abcabcdefghjklmnopqrsuvwabcdefgijklmnopqrstuwabcdefgijklmnoprstuvw";
x[1] = "abcdefghijklmnopqrtuvwabcfghijklmnopqstuvwabcdeghijklmopqrstuvw";
E(10, x, 11);
}
}
)";
NEW_ENCODER(
compileAndRun(sourceCode);
callContractFunction("f()");
REQUIRE_LOG_DATA(encodeArgs(
10, 0x60, 11,
2, 0x40, 0xc0,
66, string("abcabcdefghjklmnopqrsuvwabcdefgijklmnopqrstuwabcdefgijklmnoprstuvw"),
63, string("abcdefghijklmnopqrtuvwabcfghijklmnopqstuvwabcdeghijklmopqrstuvw")
));
)
}
BOOST_AUTO_TEST_CASE(storage_byte_array)
{
string sourceCode = R"(
contract C {
bytes short;
bytes long;
event E(bytes s, bytes l);
function f() {
short = "123456789012345678901234567890a";
long = "ffff123456789012345678901234567890afffffffff123456789012345678901234567890a";
E(short, long);
}
}
)";
BOTH_ENCODERS(
compileAndRun(sourceCode);
callContractFunction("f()");
REQUIRE_LOG_DATA(encodeArgs(
0x40, 0x80,
31, string("123456789012345678901234567890a"),
75, string("ffff123456789012345678901234567890afffffffff123456789012345678901234567890a")
));
)
}
BOOST_AUTO_TEST_CASE(storage_array)
{
string sourceCode = R"(
contract C {
address[3] addr;
event E(address[3] a);
function f() {
assembly {
sstore(0, sub(0, 1))
sstore(1, sub(0, 2))
sstore(2, sub(0, 3))
}
E(addr);
}
}
)";
BOTH_ENCODERS(
compileAndRun(sourceCode);
callContractFunction("f()");
REQUIRE_LOG_DATA(encodeArgs(u160(-1), u160(-2), u160(-3)));
)
}
BOOST_AUTO_TEST_CASE(storage_array_dyn)
{
string sourceCode = R"(
contract C {
address[] addr;
event E(address[] a);
function f() {
addr.push(1);
addr.push(2);
addr.push(3);
E(addr);
}
}
)";
BOTH_ENCODERS(
compileAndRun(sourceCode);
callContractFunction("f()");
REQUIRE_LOG_DATA(encodeArgs(0x20, 3, u160(1), u160(2), u160(3)));
)
}
BOOST_AUTO_TEST_CASE(storage_array_compact)
{
string sourceCode = R"(
contract C {
int72[] x;
event E(int72[]);
function f() {
x.push(-1);
x.push(2);
x.push(-3);
x.push(4);
x.push(-5);
x.push(6);
x.push(-7);
x.push(8);
E(x);
}
}
)";
BOTH_ENCODERS(
compileAndRun(sourceCode);
callContractFunction("f()");
REQUIRE_LOG_DATA(encodeArgs(
0x20, 8, u256(-1), 2, u256(-3), 4, u256(-5), 6, u256(-7), 8
));
)
}
BOOST_AUTO_TEST_CASE(external_function)
{
string sourceCode = R"(
contract C {
event E(function(uint) external returns (uint), function(uint) external returns (uint));
function(uint) external returns (uint) g;
function f(uint) returns (uint) {
g = this.f;
E(this.f, g);
}
}
)";
BOTH_ENCODERS(
compileAndRun(sourceCode);
callContractFunction("f(uint256)");
string functionIdF = asString(m_contractAddress.ref()) + asString(FixedHash<4>(dev::keccak256("f(uint256)")).ref());
REQUIRE_LOG_DATA(encodeArgs(functionIdF, functionIdF));
)
}
BOOST_AUTO_TEST_CASE(external_function_cleanup)
{
string sourceCode = R"(
contract C {
event E(function(uint) external returns (uint), function(uint) external returns (uint));
// This test relies on the fact that g is stored in slot zero.
function(uint) external returns (uint) g;
function f(uint) returns (uint) {
function(uint) external returns (uint)[1] memory h;
assembly { sstore(0, sub(0, 1)) mstore(h, sub(0, 1)) }
E(h[0], g);
}
}
)";
BOTH_ENCODERS(
compileAndRun(sourceCode);
callContractFunction("f(uint256)");
REQUIRE_LOG_DATA(encodeArgs(string(24, char(-1)), string(24, char(-1))));
)
}
BOOST_AUTO_TEST_CASE(calldata)
{
string sourceCode = R"(
contract C {
event E(bytes);
function f(bytes a) external {
E(a);
}
}
)";
string s("abcdef");
string t("abcdefgggggggggggggggggggggggggggggggggggggggghhheeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeggg");
bool newEncoder = false;
BOTH_ENCODERS(
compileAndRun(sourceCode);
callContractFunction("f(bytes)", 0x20, s.size(), s);
// The old encoder did not pad to multiples of 32 bytes
REQUIRE_LOG_DATA(encodeArgs(0x20, s.size()) + (newEncoder ? encodeArgs(s) : asBytes(s)));
callContractFunction("f(bytes)", 0x20, t.size(), t);
REQUIRE_LOG_DATA(encodeArgs(0x20, t.size()) + (newEncoder ? encodeArgs(t) : asBytes(t)));
newEncoder = true;
)
}
BOOST_AUTO_TEST_CASE(function_name_collision)
{
// This tests a collision between a function name used by inline assembly
// and by the ABI encoder
string sourceCode = R"(
contract C {
function f(uint x) returns (uint) {
assembly {
function abi_encode_t_uint256_to_t_uint256() {
mstore(0, 7)
return(0, 0x20)
}
switch x
case 0 { abi_encode_t_uint256_to_t_uint256() }
}
return 1;
}
}
)";
BOTH_ENCODERS(
compileAndRun(sourceCode);
BOOST_CHECK(callContractFunction("f(uint256)", encodeArgs(0)) == encodeArgs(7));
BOOST_CHECK(callContractFunction("f(uint256)", encodeArgs(1)) == encodeArgs(1));
)
}
BOOST_AUTO_TEST_CASE(structs)
{
string sourceCode = R"(
contract C {
struct S { uint16 a; uint16 b; T[] sub; uint16 c; }
struct T { uint64[2] x; }
S s;
event e(uint16, S);
function f() returns (uint, S) {
uint16 x = 7;
s.a = 8;
s.b = 9;
s.c = 10;
s.sub.length = 3;
s.sub[0].x[0] = 11;
s.sub[1].x[0] = 12;
s.sub[2].x[1] = 13;
e(x, s);
return (x, s);
}
}
)";
NEW_ENCODER(
compileAndRun(sourceCode, 0, "C");
bytes encoded = encodeArgs(
u256(7), 0x40,
8, 9, 0x80, 10,
3,
11, 0,
12, 0,
0, 13
);
BOOST_CHECK(callContractFunction("f()") == encoded);
REQUIRE_LOG_DATA(encoded);
)
}
BOOST_AUTO_TEST_CASE(empty_struct)
{
string sourceCode = R"(
contract C {
struct S { }
S s;
event e(uint16, S, uint16);
function f() returns (uint, S, uint) {
e(7, s, 8);
return (7, s, 8);
}
}
)";
NEW_ENCODER(
compileAndRun(sourceCode, 0, "C");
bytes encoded = encodeArgs(7, 8);
BOOST_CHECK(callContractFunction("f()") == encoded);
REQUIRE_LOG_DATA(encoded);
)
}
BOOST_AUTO_TEST_CASE(structs2)
{
string sourceCode = R"(
contract C {
enum E {A, B, C}
struct T { uint x; E e; uint8 y; }
struct S { C c; T[] t;}
function f() public returns (uint a, S[2] s1, S[] s2, uint b) {
a = 7;
b = 8;
s1[0].c = this;
s1[0].t = new T[](1);
s1[0].t[0].x = 0x11;
s1[0].t[0].e = E.B;
s1[0].t[0].y = 0x12;
s2 = new S[](2);
s2[1].c = C(0x1234);
s2[1].t = new T[](3);
s2[1].t[1].x = 0x21;
s2[1].t[1].e = E.C;
s2[1].t[1].y = 0x22;
}
}
)";
NEW_ENCODER(
compileAndRun(sourceCode, 0, "C");
ABI_CHECK(callContractFunction("f()"), encodeArgs(
7, 0x80, 0x1e0, 8,
// S[2] s1
0x40,
0x100,
// S s1[0]
u256(u160(m_contractAddress)),
0x40,
// T s1[0].t
1, // length
// s1[0].t[0]
0x11, 1, 0x12,
// S s1[1]
0, 0x40,
// T s1[1].t
0,
// S[] s2 (0x1e0)
2, // length
0x40, 0xa0,
// S s2[0]
0, 0x40, 0,
// S s2[1]
0x1234, 0x40,
// s2[1].t
3, // length
0, 0, 0,
0x21, 2, 0x22,
0, 0, 0
));
)
}
BOOST_AUTO_TEST_SUITE_END()
}
}
} // end namespaces