/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* @author Christian <c@ethdev.com>
* @date 2014
* Framework for executing contracts and testing them using RPC.
*/
#pragma once
#include <test/Options.h>
#include <test/RPCSession.h>
#include <libsolidity/interface/EVMVersion.h>
#include <libdevcore/FixedHash.h>
#include <libdevcore/SHA3.h>
#include <functional>
namespace dev
{
namespace test
{
using rational = boost::rational<dev::bigint>;
/// An Ethereum address: 20 bytes.
/// @NOTE This is not endian-specific; it's just a bunch of bytes.
using Address = h160;
// The various denominations; here for ease of use where needed within code.
static const u256 wei = 1;
static const u256 shannon = u256("1000000000");
static const u256 szabo = shannon * 1000;
static const u256 finney = szabo * 1000;
static const u256 ether = finney * 1000;
class ExecutionFramework
{
public:
ExecutionFramework();
virtual ~ExecutionFramework() = default;
virtual bytes const& compileAndRunWithoutCheck(
std::string const& _sourceCode,
u256 const& _value = 0,
std::string const& _contractName = "",
bytes const& _arguments = bytes(),
std::map<std::string, Address> const& _libraryAddresses = std::map<std::string, Address>()
) = 0;
bytes const& compileAndRun(
std::string const& _sourceCode,
u256 const& _value = 0,
std::string const& _contractName = "",
bytes const& _arguments = bytes(),
std::map<std::string, Address> const& _libraryAddresses = std::map<std::string, Address>()
)
{
compileAndRunWithoutCheck(_sourceCode, _value, _contractName, _arguments, _libraryAddresses);
BOOST_REQUIRE(!m_output.empty());
return m_output;
}
bytes const& callFallbackWithValue(u256 const& _value)
{
sendMessage(bytes(), false, _value);
return m_output;
}
bytes const & callFallback()
{
return callFallbackWithValue(0);
}
bytes const& callContractFunctionWithValueNoEncoding(std::string _sig, u256 const& _value, bytes const& _arguments)
{
FixedHash<4> hash(dev::keccak256(_sig));
sendMessage(hash.asBytes() + _arguments, false, _value);
return m_output;
}
bytes const& callContractFunctionNoEncoding(std::string _sig, bytes const& _arguments)
{
return callContractFunctionWithValueNoEncoding(_sig, 0, _arguments);
}
template <class... Args>
bytes const& callContractFunctionWithValue(std::string _sig, u256 const& _value, Args const&... _arguments)
{
return callContractFunctionWithValueNoEncoding(_sig, _value, encodeArgs(_arguments...));
}
template <class... Args>
bytes const& callContractFunction(std::string _sig, Args const&... _arguments)
{
return callContractFunctionWithValue(_sig, 0, _arguments...);
}
template <class CppFunction, class... Args>
void testContractAgainstCpp(std::string _sig, CppFunction const& _cppFunction, Args const&... _arguments)
{
bytes contractResult = callContractFunction(_sig, _arguments...);
bytes cppResult = callCppAndEncodeResult(_cppFunction, _arguments...);
BOOST_CHECK_MESSAGE(
contractResult == cppResult,
"Computed values do not match.\nContract: " +
toHex(contractResult) +
"\nC++: " +
toHex(cppResult)
);
}
template <class CppFunction, class... Args>
void testContractAgainstCppOnRange(std::string _sig, CppFunction const& _cppFunction, u256 const& _rangeStart, u256 const& _rangeEnd)
{
for (u256 argument = _rangeStart; argument < _rangeEnd; ++argument)
{
bytes contractResult = callContractFunction(_sig, argument);
bytes cppResult = callCppAndEncodeResult(_cppFunction, argument);
BOOST_CHECK_MESSAGE(
contractResult == cppResult,
"Computed values do not match.\nContract: " +
toHex(contractResult) +
"\nC++: " +
toHex(cppResult) +
"\nArgument: " +
toHex(encode(argument))
);
}
}
static std::pair<bool, std::string> compareAndCreateMessage(bytes const& _result, bytes const& _expectation);
static bytes encode(bool _value) { return encode(byte(_value)); }
static bytes encode(int _value) { return encode(u256(_value)); }
static bytes encode(size_t _value) { return encode(u256(_value)); }
static bytes encode(char const* _value) { return encode(std::string(_value)); }
static bytes encode(byte _value) { return bytes(31, 0) + bytes{_value}; }
static bytes encode(u256 const& _value) { return toBigEndian(_value); }
/// @returns the fixed-point encoding of a rational number with a given
/// number of fractional bits.
static bytes encode(std::pair<rational, int> const& _valueAndPrecision)
{
rational const& value = _valueAndPrecision.first;
int fractionalBits = _valueAndPrecision.second;
return encode(u256((value.numerator() << fractionalBits) / value.denominator()));
}
static bytes encode(h256 const& _value) { return _value.asBytes(); }
static bytes encode(bytes const& _value, bool _padLeft = true)
{
bytes padding = bytes((32 - _value.size() % 32) % 32, 0);
return _padLeft ? padding + _value : _value + padding;
}
static bytes encode(std::string const& _value) { return encode(asBytes(_value), false); }
template <class _T>
static bytes encode(std::vector<_T> const& _value)
{
bytes ret;
for (auto const& v: _value)
ret += encode(v);
return ret;
}
template <class FirstArg, class... Args>
static bytes encodeArgs(FirstArg const& _firstArg, Args const&... _followingArgs)
{
return encode(_firstArg) + encodeArgs(_followingArgs...);
}
static bytes encodeArgs()
{
return bytes();
}
//@todo might be extended in the future
template <class Arg>
static bytes encodeDyn(Arg const& _arg)
{
return encodeArgs(u256(0x20), u256(_arg.size()), _arg);
}
private:
template <class CppFunction, class... Args>
auto callCppAndEncodeResult(CppFunction const& _cppFunction, Args const&... _arguments)
-> typename std::enable_if<std::is_void<decltype(_cppFunction(_arguments...))>::value, bytes>::type
{
_cppFunction(_arguments...);
return bytes();
}
template <class CppFunction, class... Args>
auto callCppAndEncodeResult(CppFunction const& _cppFunction, Args const&... _arguments)
-> typename std::enable_if<!std::is_void<decltype(_cppFunction(_arguments...))>::value, bytes>::type
{
return encode(_cppFunction(_arguments...));
}
protected:
void sendMessage(bytes const& _data, bool _isCreation, u256 const& _value = 0);
void sendEther(Address const& _to, u256 const& _value);
size_t currentTimestamp();
size_t blockTimestamp(u256 _number);
/// @returns the (potentially newly created) _ith address.
Address account(size_t _i);
u256 balanceAt(Address const& _addr);
bool storageEmpty(Address const& _addr);
bool addressHasCode(Address const& _addr);
RPCSession& m_rpc;
struct LogEntry
{
Address address;
std::vector<h256> topics;
bytes data;
};
solidity::EVMVersion m_evmVersion;
unsigned m_optimizeRuns = 200;
bool m_optimize = false;
bool m_showMessages = false;
Address m_sender;
Address m_contractAddress;
u256 m_blockNumber;
u256 const m_gasPrice = 100 * szabo;
u256 const m_gas = 100000000;
bytes m_output;
std::vector<LogEntry> m_logs;
u256 m_gasUsed;
};
#define ABI_CHECK(result, expectation) do { \
auto abiCheckResult = ExecutionFramework::compareAndCreateMessage((result), (expectation)); \
BOOST_CHECK_MESSAGE(abiCheckResult.first, abiCheckResult.second); \
} while (0)
}
} // end namespaces