aboutsummaryrefslogblamecommitdiffstats
path: root/libevmasm/CommonSubexpressionEliminator.h
blob: b20de24697f31b34d61d68649c38ba30f80456e3 (plain) (tree)
1
2
3
4
5
6
7
8
9
  
                                      
 
                                                                        



                                                                            
                                                                   




                                                                         
                                                                         


















                                                                                
                                 

























                                                                                              

                                                          
                                                                                                                    


                                                                                                   
                                                                                                
                                              
                                                                                                                           



                                                            






                                                                              
                                  
                           


                                                                                                   





















                                                                                                         

                                                                                                        



                                                                                                        
                                                
                                        








                                                                                   
                                                                                             
                                                                       



                                                                                     


                                                                                                     















                                                                                                               
                              



                                                                     

                                                                                                







                                                                                                      
                                        




                                                               

                                   

 
                                                                                                          
                                                                                                                           







                                                 
/*
    This file is part of solidity.

    solidity is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    solidity is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with solidity.  If not, see <http://www.gnu.org/licenses/>.
*/
/**
 * @file CommonSubexpressionEliminator.h
 * @author Christian <c@ethdev.com>
 * @date 2015
 * Optimizer step for common subexpression elimination and stack reorganisation.
 */

#pragma once

#include <vector>
#include <map>
#include <set>
#include <tuple>
#include <ostream>
#include <libdevcore/CommonIO.h>
#include <libdevcore/Exceptions.h>
#include <libevmasm/ExpressionClasses.h>
#include <libevmasm/SemanticInformation.h>
#include <libevmasm/KnownState.h>

namespace dev
{
namespace eth
{

class AssemblyItem;
using AssemblyItems = std::vector<AssemblyItem>;

/**
 * Optimizer step that performs common subexpression elimination and stack reorganisation,
 * i.e. it tries to infer equality among expressions and compute the values of two expressions
 * known to be equal only once.
 *
 * The general workings are that for each assembly item that is fed into the eliminator, an
 * equivalence class is derived from the operation and the equivalence class of its arguments.
 * DUPi, SWAPi and some arithmetic instructions are used to infer equivalences while these
 * classes are determined.
 *
 * When the list of optimized items is requested, they are generated in a bottom-up fashion,
 * adding code for equivalence classes that were not yet computed.
 */
class CommonSubexpressionEliminator
{
public:
    using Id = ExpressionClasses::Id;
    using StoreOperation = KnownState::StoreOperation;

    explicit CommonSubexpressionEliminator(KnownState const& _state): m_initialState(_state), m_state(_state) {}

    /// Feeds AssemblyItems into the eliminator and @returns the iterator pointing at the first
    /// item that must be fed into a new instance of the eliminator.
    /// @param _msizeImportant if false, do not consider modification of MSIZE a side-effect
    template <class _AssemblyItemIterator>
    _AssemblyItemIterator feedItems(_AssemblyItemIterator _iterator, _AssemblyItemIterator _end, bool _msizeImportant);

    /// @returns the resulting items after optimization.
    AssemblyItems getOptimizedItems();

private:
    /// Feeds the item into the system for analysis.
    void feedItem(AssemblyItem const& _item, bool _copyItem = false);

    /// Tries to optimize the item that breaks the basic block at the end.
    void optimizeBreakingItem();

    KnownState m_initialState;
    KnownState m_state;
    /// Keeps information about which storage or memory slots were written to at which sequence
    /// number with what instruction.
    std::vector<StoreOperation> m_storeOperations;

    /// The item that breaks the basic block, can be nullptr.
    /// It is usually appended to the block but can be optimized in some cases.
    AssemblyItem const* m_breakingItem = nullptr;
};

/**
 * Unit that generates code from current stack layout, target stack layout and information about
 * the equivalence classes.
 */
class CSECodeGenerator
{
public:
    using StoreOperation = CommonSubexpressionEliminator::StoreOperation;
    using StoreOperations = std::vector<StoreOperation>;
    using Id = ExpressionClasses::Id;

    /// Initializes the code generator with the given classes and store operations.
    /// The store operations have to be sorted by sequence number in ascending order.
    CSECodeGenerator(ExpressionClasses& _expressionClasses, StoreOperations const& _storeOperations);

    /// @returns the assembly items generated from the given requirements
    /// @param _initialSequenceNumber starting sequence number, do not generate sequenced operations
    /// before this number.
    /// @param _initialStack current contents of the stack (up to stack height of zero)
    /// @param _targetStackContents final contents of the stack, by stack height relative to initial
    /// @note should only be called once on each object.
    AssemblyItems generateCode(
        unsigned _initialSequenceNumber,
        int _initialStackHeight,
        std::map<int, Id> const& _initialStack,
        std::map<int, Id> const& _targetStackContents
    );

private:
    /// Recursively discovers all dependencies to @a m_requests.
    void addDependencies(Id _c);

    /// Produce code that generates the given element if it is not yet present.
    /// @param _allowSequenced indicates that sequence-constrained operations are allowed
    void generateClassElement(Id _c, bool _allowSequenced = false);
    /// @returns the position of the representative of the given id on the stack.
    /// @note throws an exception if it is not on the stack.
    int classElementPosition(Id _id) const;

    /// @returns true if the copy of @a _element can be removed from stack position _fromPosition
    /// - in general or, if given, while computing @a _result.
    bool canBeRemoved(Id _element, Id _result = Id(-1), int _fromPosition = c_invalidPosition);

    /// Appends code to remove the topmost stack element if it can be removed.
    bool removeStackTopIfPossible();

    /// Appends a dup instruction to m_generatedItems to retrieve the element at the given stack position.
    void appendDup(int _fromPosition, SourceLocation const& _location);
    /// Appends a swap instruction to m_generatedItems to retrieve the element at the given stack position.
    /// @note this might also remove the last item if it exactly the same swap instruction.
    void appendOrRemoveSwap(int _fromPosition, SourceLocation const& _location);
    /// Appends the given assembly item.
    void appendItem(AssemblyItem const& _item);

    static const int c_invalidPosition = -0x7fffffff;

    AssemblyItems m_generatedItems;
    /// Current height of the stack relative to the start.
    int m_stackHeight = 0;
    /// If (b, a) is in m_requests then b is needed to compute a.
    std::multimap<Id, Id> m_neededBy;
    /// Current content of the stack.
    std::map<int, Id> m_stack;
    /// Current positions of equivalence classes, equal to the empty set if already deleted.
    std::map<Id, std::set<int>> m_classPositions;

    /// The actual eqivalence class items and how to compute them.
    ExpressionClasses& m_expressionClasses;
    /// Keeps information about which storage or memory slots were written to by which operations.
    /// The operations are sorted ascendingly by sequence number.
    std::map<std::pair<StoreOperation::Target, Id>, StoreOperations> m_storeOperations;
    /// The set of equivalence classes that should be present on the stack at the end.
    std::set<Id> m_finalClasses;
    std::map<int, Id> m_targetStack;
};

template <class _AssemblyItemIterator>
_AssemblyItemIterator CommonSubexpressionEliminator::feedItems(
    _AssemblyItemIterator _iterator,
    _AssemblyItemIterator _end,
    bool _msizeImportant
)
{
    assertThrow(!m_breakingItem, OptimizerException, "Invalid use of CommonSubexpressionEliminator.");
    for (; _iterator != _end && !SemanticInformation::breaksCSEAnalysisBlock(*_iterator, _msizeImportant); ++_iterator)
        feedItem(*_iterator);
    if (_iterator != _end)
        m_breakingItem = &(*_iterator++);
    return _iterator;
}

}
}