aboutsummaryrefslogblamecommitdiffstats
path: root/CompilerUtils.cpp
blob: 0a95c3adbce1ff66d22b39b9faab6dabbd95ad46 (plain) (tree)
































                                                                             

                                                      

                                                                           
 
                                                                                                               












                                                                                                           

 
 
                                                                                                     
 
                                                                                                                







                                                                                      
                                                             
         
                                                                             
 




















                                                                                                                                     
 














                                                                                                                      





                                                                                    
                                                                                                                              


                                                                                        
         

 



                                                                                                                             
                                                               


                                                                                                                                 



                                                                                                     
                                                                           







                                                                                             






                                                      







                                                                                            





                                                                                   
























                                                                                                                                
                                                            




                                                                                                          

                                     























































































                                                                                                                                    























                                                                                                              






















                                                                                               















                                                                                                 



















                                                                                   

 
/*
    This file is part of cpp-ethereum.

    cpp-ethereum is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    cpp-ethereum is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with cpp-ethereum.  If not, see <http://www.gnu.org/licenses/>.
*/
/**
 * @author Christian <c@ethdev.com>
 * @date 2014
 * Routines used by both the compiler and the expression compiler.
 */

#include <libsolidity/CompilerUtils.h>
#include <libsolidity/AST.h>
#include <libevmcore/Instruction.h>

using namespace std;

namespace dev
{
namespace solidity
{

const unsigned int CompilerUtils::dataStartOffset = 4;

unsigned CompilerUtils::loadFromMemory(unsigned _offset, Type const& _type,
    bool _fromCalldata, bool _padToWordBoundaries)
{
    solAssert(_type.getCategory() != Type::Category::ByteArray, "Unable to statically load dynamic type.");
    m_context << u256(_offset);
    return loadFromMemoryHelper(_type, _fromCalldata, _padToWordBoundaries);
}

void CompilerUtils::loadFromMemoryDynamic(Type const& _type, bool _fromCalldata, bool _padToWordBoundaries)
{
    solAssert(_type.getCategory() != Type::Category::ByteArray, "Byte arrays not yet implemented.");
    m_context << eth::Instruction::DUP1;
    unsigned numBytes = loadFromMemoryHelper(_type, _fromCalldata, _padToWordBoundaries);
    // update memory counter
    for (unsigned i = 0; i < _type.getSizeOnStack(); ++i)
        m_context << eth::swapInstruction(1 + i);
    m_context << u256(numBytes) << eth::Instruction::ADD;
}


unsigned CompilerUtils::storeInMemory(unsigned _offset, Type const& _type, bool _padToWordBoundaries)
{
    solAssert(_type.getCategory() != Type::Category::ByteArray, "Unable to statically store dynamic type.");
    unsigned numBytes = prepareMemoryStore(_type, _padToWordBoundaries);
    if (numBytes > 0)
        m_context << u256(_offset) << eth::Instruction::MSTORE;
    return numBytes;
}

void CompilerUtils::storeInMemoryDynamic(Type const& _type, bool _padToWordBoundaries)
{
    if (_type.getCategory() == Type::Category::ByteArray)
    {
        auto const& type = dynamic_cast<ByteArrayType const&>(_type);

        if (type.getLocation() == ByteArrayType::Location::CallData)
        {
            m_context << eth::Instruction::CALLDATASIZE << u256(0) << eth::Instruction::DUP3
                      << eth::Instruction::CALLDATACOPY
                      << eth::Instruction::CALLDATASIZE << eth::Instruction::ADD;
        }
        else
        {
            solAssert(type.getLocation() == ByteArrayType::Location::Storage, "Memory byte arrays not yet implemented.");
            m_context << eth::Instruction::DUP1 << eth::Instruction::SLOAD;
            // stack here: memory_offset storage_offset length_bytes
            // jump to end if length is zero
            m_context << eth::Instruction::DUP1 << eth::Instruction::ISZERO;
            eth::AssemblyItem loopEnd = m_context.newTag();
            m_context.appendConditionalJumpTo(loopEnd);
            // compute memory end offset
            m_context << eth::Instruction::DUP3 << eth::Instruction::ADD << eth::Instruction::SWAP2;
            // actual array data is stored at SHA3(storage_offset)
            m_context << eth::Instruction::SWAP1;
            CompilerUtils(m_context).computeHashStatic();
            m_context << eth::Instruction::SWAP1;

            // stack here: memory_end_offset storage_data_offset memory_offset
            eth::AssemblyItem loopStart = m_context.newTag();
            m_context << loopStart
                      // load and store
                      << eth::Instruction::DUP2 << eth::Instruction::SLOAD
                      << eth::Instruction::DUP2 << eth::Instruction::MSTORE
                      // increment storage_data_offset by 1
                      << eth::Instruction::SWAP1 << u256(1) << eth::Instruction::ADD
                      // increment memory offset by 32
                      << eth::Instruction::SWAP1 << u256(32) << eth::Instruction::ADD
                      // check for loop condition
                      << eth::Instruction::DUP1 << eth::Instruction::DUP4 << eth::Instruction::GT;
            m_context.appendConditionalJumpTo(loopStart);
            m_context << loopEnd << eth::Instruction::POP << eth::Instruction::POP;
        }
    }
    else
    {
        unsigned numBytes = prepareMemoryStore(_type, _padToWordBoundaries);
        if (numBytes > 0)
        {
            solAssert(_type.getSizeOnStack() == 1, "Memory store of types with stack size != 1 not implemented.");
            m_context << eth::Instruction::DUP2 << eth::Instruction::MSTORE;
            m_context << u256(numBytes) << eth::Instruction::ADD;
        }
    }
}

void CompilerUtils::moveToStackVariable(VariableDeclaration const& _variable)
{
    unsigned const stackPosition = m_context.baseToCurrentStackOffset(m_context.getBaseStackOffsetOfVariable(_variable));
    unsigned const size = _variable.getType()->getSizeOnStack();
    // move variable starting from its top end in the stack
    if (stackPosition - size + 1 > 16)
        BOOST_THROW_EXCEPTION(CompilerError() << errinfo_sourceLocation(_variable.getLocation())
                                              << errinfo_comment("Stack too deep."));
    for (unsigned i = 0; i < size; ++i)
        m_context << eth::swapInstruction(stackPosition - size + 1) << eth::Instruction::POP;
}

void CompilerUtils::copyToStackTop(unsigned _stackDepth, Type const& _type)
{
    if (_stackDepth > 16)
        BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Stack too deep."));
    unsigned const size = _type.getSizeOnStack();
    for (unsigned i = 0; i < size; ++i)
        m_context << eth::dupInstruction(_stackDepth);
}

void CompilerUtils::popStackElement(Type const& _type)
{
    unsigned const size = _type.getSizeOnStack();
    for (unsigned i = 0; i < size; ++i)
        m_context << eth::Instruction::POP;
}

unsigned CompilerUtils::getSizeOnStack(vector<shared_ptr<Type const>> const& _variableTypes)
{
    unsigned size = 0;
    for (shared_ptr<Type const> const& type: _variableTypes)
        size += type->getSizeOnStack();
    return size;
}

void CompilerUtils::computeHashStatic(Type const& _type, bool _padToWordBoundaries)
{
    unsigned length = storeInMemory(0, _type, _padToWordBoundaries);
    m_context << u256(length) << u256(0) << eth::Instruction::SHA3;
}

void CompilerUtils::copyByteArrayToStorage(ByteArrayType const& _targetType,
                                           ByteArrayType const& _sourceType) const
{
    // stack layout: [source_ref] target_ref (top)
    // need to leave target_ref on the stack at the end
    solAssert(_targetType.getLocation() == ByteArrayType::Location::Storage, "");

    switch (_sourceType.getLocation())
    {
    case ByteArrayType::Location::CallData:
    {
        // @todo this does not take length into account. It also assumes that after "CALLDATALENGTH" we only have zeros.
        // fetch old length and convert to words
        m_context << eth::Instruction::DUP1 << eth::Instruction::SLOAD;
        m_context << u256(31) << eth::Instruction::ADD
                  << u256(32) << eth::Instruction::SWAP1 << eth::Instruction::DIV;
        // stack here: target_ref target_length_words
        // actual array data is stored at SHA3(storage_offset)
        m_context << eth::Instruction::DUP2;
        CompilerUtils(m_context).computeHashStatic();
        // compute target_data_end
        m_context << eth::Instruction::DUP1 << eth::Instruction::SWAP2 << eth::Instruction::ADD
                  << eth::Instruction::SWAP1;
        // stack here: target_ref target_data_end target_data_ref
        // store length (in bytes)
        m_context << eth::Instruction::CALLDATASIZE;
        m_context << eth::Instruction::DUP1 << eth::Instruction::DUP5 << eth::Instruction::SSTORE;
        // jump to end if length is zero
        m_context << eth::Instruction::ISZERO;
        eth::AssemblyItem copyLoopEnd = m_context.newTag();
        m_context.appendConditionalJumpTo(copyLoopEnd);
        // store start offset
        m_context << u256(0);
        // stack now: target_ref target_data_end target_data_ref calldata_offset
        eth::AssemblyItem copyLoopStart = m_context.newTag();
        m_context << copyLoopStart
                  // copy from calldata and store
                  << eth::Instruction::DUP1 << eth::Instruction::CALLDATALOAD
                  << eth::Instruction::DUP3 << eth::Instruction::SSTORE
                  // increment target_data_ref by 1
                  << eth::Instruction::SWAP1 << u256(1) << eth::Instruction::ADD
                  // increment calldata_offset by 32
                  << eth::Instruction::SWAP1 << u256(32) << eth::Instruction::ADD
                  // check for loop condition
                  << eth::Instruction::DUP1 << eth::Instruction::CALLDATASIZE << eth::Instruction::GT;
        m_context.appendConditionalJumpTo(copyLoopStart);
        m_context << eth::Instruction::POP;
        m_context << copyLoopEnd;

        // now clear leftover bytes of the old value
        // stack now: target_ref target_data_end target_data_ref
        clearStorageLoop();

        m_context << eth::Instruction::POP;
        break;
    }
    case ByteArrayType::Location::Storage:
    {
        // this copies source to target and also clears target if it was larger

        // stack: source_ref target_ref
        // store target_ref
        m_context << eth::Instruction::SWAP1 << eth::Instruction::DUP2;
        // fetch lengthes
        m_context << eth::Instruction::DUP1 << eth::Instruction::SLOAD << eth::Instruction::SWAP2
                  << eth::Instruction::DUP1 << eth::Instruction::SLOAD;
        // stack: target_ref target_len_bytes target_ref source_ref source_len_bytes
        // store new target length
        m_context << eth::Instruction::DUP1 << eth::Instruction::DUP4 << eth::Instruction::SSTORE;
        // compute hashes (data positions)
        m_context << eth::Instruction::SWAP2;
        CompilerUtils(m_context).computeHashStatic();
        m_context << eth::Instruction::SWAP1;
        CompilerUtils(m_context).computeHashStatic();
        // stack: target_ref target_len_bytes source_len_bytes target_data_pos source_data_pos
        // convert lengthes from bytes to storage slots
        m_context << u256(31) << u256(32) << eth::Instruction::DUP1 << eth::Instruction::DUP3
                  << eth::Instruction::DUP8 << eth::Instruction::ADD << eth::Instruction::DIV
                  << eth::Instruction::SWAP2
                  << eth::Instruction::DUP6 << eth::Instruction::ADD << eth::Instruction::DIV;
        // stack: target_ref target_len_bytes source_len_bytes target_data_pos source_data_pos target_len source_len
        // @todo we might be able to go without a third counter
        m_context << u256(0);
        // stack: target_ref target_len_bytes source_len_bytes target_data_pos source_data_pos target_len source_len counter
        eth::AssemblyItem copyLoopStart = m_context.newTag();
        m_context << copyLoopStart;
        // check for loop condition
        m_context << eth::Instruction::DUP1 << eth::Instruction::DUP3
                   << eth::Instruction::GT << eth::Instruction::ISZERO;
        eth::AssemblyItem copyLoopEnd = m_context.newTag();
        m_context.appendConditionalJumpTo(copyLoopEnd);
        // copy
        m_context << eth::Instruction::DUP4 << eth::Instruction::DUP2 << eth::Instruction::ADD
                  << eth::Instruction::SLOAD
                  << eth::Instruction::DUP6 << eth::Instruction::DUP3 << eth::Instruction::ADD
                  << eth::Instruction::SSTORE;
        // increment
        m_context << u256(1) << eth::Instruction::ADD;
        m_context.appendJumpTo(copyLoopStart);
        m_context << copyLoopEnd;

        // zero-out leftovers in target
        // stack: target_ref target_len_bytes source_len_bytes target_data_pos source_data_pos target_len source_len counter
        // add counter to target_data_pos
        m_context << eth::Instruction::DUP5 << eth::Instruction::ADD
                  << eth::Instruction::SWAP5 << eth::Instruction::POP;
        // stack: target_ref target_len_bytes target_data_pos_updated target_data_pos source_data_pos target_len source_len
        // add length to target_data_pos to get target_data_end
        m_context << eth::Instruction::POP << eth::Instruction::DUP3 << eth::Instruction::ADD
                  << eth::Instruction::SWAP4
                  << eth::Instruction::POP  << eth::Instruction::POP << eth::Instruction::POP;
        // stack: target_ref target_data_end target_data_pos_updated
        clearStorageLoop();
        m_context << eth::Instruction::POP;
        break;
    }
    default:
        solAssert(false, "Given byte array location not implemented.");
    }
}

unsigned CompilerUtils::loadFromMemoryHelper(Type const& _type, bool _fromCalldata, bool _padToWordBoundaries)
{
    unsigned _encodedSize = _type.getCalldataEncodedSize();
    unsigned numBytes = _padToWordBoundaries ? getPaddedSize(_encodedSize) : _encodedSize;
    bool leftAligned = _type.getCategory() == Type::Category::String;
    if (numBytes == 0)
        m_context << eth::Instruction::POP << u256(0);
    else
    {
        solAssert(numBytes <= 32, "Static memory load of more than 32 bytes requested.");
        m_context << (_fromCalldata ? eth::Instruction::CALLDATALOAD : eth::Instruction::MLOAD);
        if (numBytes != 32)
        {
            // add leading or trailing zeros by dividing/multiplying depending on alignment
            u256 shiftFactor = u256(1) << ((32 - numBytes) * 8);
            m_context << shiftFactor << eth::Instruction::SWAP1 << eth::Instruction::DIV;
            if (leftAligned)
                m_context << shiftFactor << eth::Instruction::MUL;
        }
    }

    return numBytes;
}

void CompilerUtils::clearByteArray(ByteArrayType const& _type) const
{
    solAssert(_type.getLocation() == ByteArrayType::Location::Storage, "");

    // fetch length
    m_context << eth::Instruction::DUP1 << eth::Instruction::SLOAD;
    // set length to zero
    m_context << u256(0) << eth::Instruction::DUP3 << eth::Instruction::SSTORE;
    // convert length from bytes to storage slots
    m_context << u256(31) << eth::Instruction::ADD
              << u256(32) << eth::Instruction::SWAP1 << eth::Instruction::DIV;
    // compute data positions
    m_context << eth::Instruction::SWAP1;
    CompilerUtils(m_context).computeHashStatic();
    // stack: len data_pos
    m_context << eth::Instruction::SWAP1 << eth::Instruction::DUP2 << eth::Instruction::ADD
              << eth::Instruction::SWAP1;
    clearStorageLoop();
    // cleanup
    m_context << eth::Instruction::POP;
}

unsigned CompilerUtils::prepareMemoryStore(Type const& _type, bool _padToWordBoundaries) const
{
    unsigned _encodedSize = _type.getCalldataEncodedSize();
    unsigned numBytes = _padToWordBoundaries ? getPaddedSize(_encodedSize) : _encodedSize;
    bool leftAligned = _type.getCategory() == Type::Category::String;
    if (numBytes == 0)
        m_context << eth::Instruction::POP;
    else
    {
        solAssert(numBytes <= 32, "Memory store of more than 32 bytes requested.");
        if (numBytes != 32 && !leftAligned && !_padToWordBoundaries)
            // shift the value accordingly before storing
            m_context << (u256(1) << ((32 - numBytes) * 8)) << eth::Instruction::MUL;
    }
    return numBytes;
}

void CompilerUtils::clearStorageLoop() const
{
    // stack: end_pos pos
    eth::AssemblyItem loopStart = m_context.newTag();
    m_context << loopStart;
    // check for loop condition
    m_context << eth::Instruction::DUP1 << eth::Instruction::DUP3
               << eth::Instruction::GT << eth::Instruction::ISZERO;
    eth::AssemblyItem zeroLoopEnd = m_context.newTag();
    m_context.appendConditionalJumpTo(zeroLoopEnd);
    // zero out
    m_context << u256(0) << eth::Instruction::DUP2 << eth::Instruction::SSTORE;
    // increment
    m_context << u256(1) << eth::Instruction::ADD;
    m_context.appendJumpTo(loopStart);
    // cleanup
    m_context << zeroLoopEnd;
    m_context << eth::Instruction::POP;
}

}
}