/*
This file is part of cpp-ethereum.
cpp-ethereum is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
cpp-ethereum is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with cpp-ethereum. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file Assembly.cpp
* @author Gav Wood <i@gavwood.com>
* @date 2014
*/
#include "Assembly.h"
#include <fstream>
#include <libdevcore/Log.h>
#include <libevmasm/CommonSubexpressionEliminator.h>
#include <libevmasm/ControlFlowGraph.h>
#include <json/json.h>
using namespace std;
using namespace dev;
using namespace dev::eth;
void Assembly::append(Assembly const& _a)
{
auto newDeposit = m_deposit + _a.deposit();
for (AssemblyItem i: _a.m_items)
{
if (i.type() == Tag || i.type() == PushTag)
i.setData(i.data() + m_usedTags);
else if (i.type() == PushSub || i.type() == PushSubSize)
i.setData(i.data() + m_usedTags);
append(i);
}
m_deposit = newDeposit;
m_usedTags += _a.m_usedTags;
for (auto const& i: _a.m_data)
m_data.insert(i);
for (auto const& i: _a.m_strings)
m_strings.insert(i);
for (auto const& i: _a.m_subs)
m_subs.push_back(i);
assert(!_a.m_baseDeposit);
assert(!_a.m_totalDeposit);
}
void Assembly::append(Assembly const& _a, int _deposit)
{
if (_deposit > _a.m_deposit)
BOOST_THROW_EXCEPTION(InvalidDeposit());
else
{
append(_a);
while (_deposit++ < _a.m_deposit)
append(Instruction::POP);
}
}
string Assembly::out() const
{
stringstream ret;
stream(ret);
return ret.str();
}
unsigned Assembly::bytesRequired() const
{
for (unsigned br = 1;; ++br)
{
unsigned ret = 1;
for (auto const& i: m_data)
ret += i.second.size();
for (AssemblyItem const& i: m_items)
ret += i.bytesRequired(br);
if (dev::bytesRequired(ret) <= br)
return ret;
}
}
string Assembly::getLocationFromSources(StringMap const& _sourceCodes, SourceLocation const& _location) const
{
if (_location.isEmpty() || _sourceCodes.empty() || _location.start >= _location.end || _location.start < 0)
return "";
auto it = _sourceCodes.find(*_location.sourceName);
if (it == _sourceCodes.end())
return "";
string const& source = it->second;
if (size_t(_location.start) >= source.size())
return "";
string cut = source.substr(_location.start, _location.end - _location.start);
auto newLinePos = cut.find_first_of("\n");
if (newLinePos != string::npos)
cut = cut.substr(0, newLinePos) + "...";
return move(cut);
}
ostream& Assembly::streamAsm(ostream& _out, string const& _prefix, StringMap const& _sourceCodes) const
{
_out << _prefix << ".code:" << endl;
for (AssemblyItem const& i: m_items)
{
_out << _prefix;
switch (i.type())
{
case Operation:
_out << " " << instructionInfo(i.instruction()).name << "\t" << i.getJumpTypeAsString();
break;
case Push:
_out << " PUSH " << i.data();
break;
case PushString:
_out << " PUSH \"" << m_strings.at((h256)i.data()) << "\"";
break;
case PushTag:
_out << " PUSH [tag" << i.data() << "]";
break;
case PushSub:
_out << " PUSH [$" << h256(i.data()).abridged() << "]";
break;
case PushSubSize:
_out << " PUSH #[$" << h256(i.data()).abridged() << "]";
break;
case PushProgramSize:
_out << " PUSHSIZE";
break;
case Tag:
_out << "tag" << i.data() << ": " << endl << _prefix << " JUMPDEST";
break;
case PushData:
_out << " PUSH [" << hex << (unsigned)i.data() << "]";
break;
default:
BOOST_THROW_EXCEPTION(InvalidOpcode());
}
_out << "\t\t" << getLocationFromSources(_sourceCodes, i.getLocation()) << endl;
}
if (!m_data.empty() || !m_subs.empty())
{
_out << _prefix << ".data:" << endl;
for (auto const& i: m_data)
if (u256(i.first) >= m_subs.size())
_out << _prefix << " " << hex << (unsigned)(u256)i.first << ": " << toHex(i.second) << endl;
for (size_t i = 0; i < m_subs.size(); ++i)
{
_out << _prefix << " " << hex << i << ": " << endl;
m_subs[i].stream(_out, _prefix + " ", _sourceCodes);
}
}
return _out;
}
Json::Value Assembly::createJsonValue(string _name, int _begin, int _end, string _value, string _jumpType) const
{
Json::Value value;
value["name"] = _name;
value["begin"] = _begin;
value["end"] = _end;
if (!_value.empty())
value["value"] = _value;
if (!_jumpType.empty())
value["jumpType"] = _jumpType;
return value;
}
string toStringInHex(u256 _value)
{
std::stringstream hexStr;
hexStr << hex << _value;
return hexStr.str();
}
Json::Value Assembly::streamAsmJson(ostream& _out, StringMap const& _sourceCodes) const
{
Json::Value root;
Json::Value collection(Json::arrayValue);
for (AssemblyItem const& i: m_items)
{
switch (i.type())
{
case Operation:
collection.append(
createJsonValue(instructionInfo(i.instruction()).name, i.getLocation().start, i.getLocation().end, i.getJumpTypeAsString()));
break;
case Push:
collection.append(
createJsonValue("PUSH", i.getLocation().start, i.getLocation().end, toStringInHex(i.data()), i.getJumpTypeAsString()));
break;
case PushString:
collection.append(
createJsonValue("PUSH tag", i.getLocation().start, i.getLocation().end, m_strings.at((h256)i.data())));
break;
case PushTag:
collection.append(
createJsonValue("PUSH [tag]", i.getLocation().start, i.getLocation().end, toStringInHex(i.data())));
break;
case PushSub:
collection.append(
createJsonValue("PUSH [$]", i.getLocation().start, i.getLocation().end, dev::toString(h256(i.data()))));
break;
case PushSubSize:
collection.append(
createJsonValue("PUSH #[$]", i.getLocation().start, i.getLocation().end, dev::toString(h256(i.data()))));
break;
case PushProgramSize:
collection.append(
createJsonValue("PUSHSIZE", i.getLocation().start, i.getLocation().end));
break;
case Tag:
{
collection.append(
createJsonValue("tag", i.getLocation().start, i.getLocation().end, string(i.data())));
collection.append(
createJsonValue("JUMDEST", i.getLocation().start, i.getLocation().end));
}
break;
case PushData:
{
Json::Value pushData;
pushData["name"] = "PUSH hex";
collection.append(createJsonValue("PUSH hex", i.getLocation().start, i.getLocation().end, toStringInHex(i.data())));
}
break;
default:
BOOST_THROW_EXCEPTION(InvalidOpcode());
}
}
root[".code"] = collection;
if (!m_data.empty() || !m_subs.empty())
{
Json::Value data;
for (auto const& i: m_data)
if (u256(i.first) >= m_subs.size())
data[toStringInHex((u256)i.first)] = toHex(i.second);
for (size_t i = 0; i < m_subs.size(); ++i)
{
std::stringstream hexStr;
hexStr << hex << i;
data[hexStr.str()] = m_subs[i].stream(_out, "", _sourceCodes, true);
}
root[".data"] = data;
_out << root;
}
return root;
}
Json::Value Assembly::stream(ostream& _out, string const& _prefix, StringMap const& _sourceCodes, bool _inJsonFormat) const
{
if (_inJsonFormat)
return streamAsmJson(_out, _sourceCodes);
else
{
streamAsm(_out, _prefix, _sourceCodes);
return Json::Value();
}
}
AssemblyItem const& Assembly::append(AssemblyItem const& _i)
{
m_deposit += _i.deposit();
m_items.push_back(_i);
if (m_items.back().getLocation().isEmpty() && !m_currentSourceLocation.isEmpty())
m_items.back().setLocation(m_currentSourceLocation);
return back();
}
void Assembly::injectStart(AssemblyItem const& _i)
{
m_items.insert(m_items.begin(), _i);
}
inline bool matches(AssemblyItemsConstRef _a, AssemblyItemsConstRef _b)
{
if (_a.size() != _b.size())
return false;
for (unsigned i = 0; i < _a.size(); ++i)
if (!_a[i].match(_b[i]))
return false;
return true;
}
struct OptimiserChannel: public LogChannel { static const char* name() { return "OPT"; } static const int verbosity = 12; };
#define copt dev::LogOutputStream<OptimiserChannel, true>()
Assembly& Assembly::optimise(bool _enable)
{
if (!_enable)
return *this;
unsigned total = 0;
for (unsigned count = 1; count > 0; total += count)
{
copt << toString(*this);
count = 0;
copt << "Performing optimisation...";
{
ControlFlowGraph cfg(m_items);
AssemblyItems optimisedItems;
for (BasicBlock const& block: cfg.optimisedBlocks())
{
assertThrow(!!block.startState, OptimizerException, "");
CommonSubexpressionEliminator eliminator(*block.startState);
auto iter = m_items.begin() + block.begin;
auto const end = m_items.begin() + block.end;
while (iter < end)
{
auto orig = iter;
iter = eliminator.feedItems(iter, end);
bool shouldReplace = false;
AssemblyItems optimisedChunk;
try
{
optimisedChunk = eliminator.getOptimizedItems();
shouldReplace = (optimisedChunk.size() < size_t(iter - orig));
}
catch (StackTooDeepException const&)
{
// This might happen if the opcode reconstruction is not as efficient
// as the hand-crafted code.
}
if (shouldReplace)
{
copt << "Old size: " << (iter - orig) << ", new size: " << optimisedChunk.size();
count++;
optimisedItems += optimisedChunk;
}
else
copy(orig, iter, back_inserter(optimisedItems));
}
}
if (optimisedItems.size() < m_items.size())
m_items = move(optimisedItems);
}
}
copt << total << " optimisations done.";
for (auto& sub: m_subs)
sub.optimise(true);
return *this;
}
bytes Assembly::assemble() const
{
bytes ret;
unsigned totalBytes = bytesRequired();
vector<unsigned> tagPos(m_usedTags);
map<unsigned, unsigned> tagRef;
multimap<h256, unsigned> dataRef;
vector<unsigned> sizeRef; ///< Pointers to code locations where the size of the program is inserted
unsigned bytesPerTag = dev::bytesRequired(totalBytes);
byte tagPush = (byte)Instruction::PUSH1 - 1 + bytesPerTag;
for (size_t i = 0; i < m_subs.size(); ++i)
m_data[u256(i)] = m_subs[i].assemble();
unsigned bytesRequiredIncludingData = bytesRequired();
unsigned bytesPerDataRef = dev::bytesRequired(bytesRequiredIncludingData);
byte dataRefPush = (byte)Instruction::PUSH1 - 1 + bytesPerDataRef;
ret.reserve(bytesRequiredIncludingData);
// m_data must not change from here on
for (AssemblyItem const& i: m_items)
switch (i.type())
{
case Operation:
ret.push_back((byte)i.data());
break;
case PushString:
{
ret.push_back((byte)Instruction::PUSH32);
unsigned ii = 0;
for (auto j: m_strings.at((h256)i.data()))
if (++ii > 32)
break;
else
ret.push_back((byte)j);
while (ii++ < 32)
ret.push_back(0);
break;
}
case Push:
{
byte b = max<unsigned>(1, dev::bytesRequired(i.data()));
ret.push_back((byte)Instruction::PUSH1 - 1 + b);
ret.resize(ret.size() + b);
bytesRef byr(&ret.back() + 1 - b, b);
toBigEndian(i.data(), byr);
break;
}
case PushTag:
{
ret.push_back(tagPush);
tagRef[ret.size()] = (unsigned)i.data();
ret.resize(ret.size() + bytesPerTag);
break;
}
case PushData: case PushSub:
{
ret.push_back(dataRefPush);
dataRef.insert(make_pair((h256)i.data(), ret.size()));
ret.resize(ret.size() + bytesPerDataRef);
break;
}
case PushSubSize:
{
auto s = m_data[i.data()].size();
byte b = max<unsigned>(1, dev::bytesRequired(s));
ret.push_back((byte)Instruction::PUSH1 - 1 + b);
ret.resize(ret.size() + b);
bytesRef byr(&ret.back() + 1 - b, b);
toBigEndian(s, byr);
break;
}
case PushProgramSize:
{
ret.push_back(dataRefPush);
sizeRef.push_back(ret.size());
ret.resize(ret.size() + bytesPerDataRef);
break;
}
case Tag:
tagPos[(unsigned)i.data()] = ret.size();
ret.push_back((byte)Instruction::JUMPDEST);
break;
default:
BOOST_THROW_EXCEPTION(InvalidOpcode());
}
for (auto const& i: tagRef)
{
bytesRef r(ret.data() + i.first, bytesPerTag);
//@todo in the failure case, we could use the position of the invalid jumpdest
toBigEndian(i.second < tagPos.size() ? tagPos[i.second] : (1 << (8 * bytesPerTag)) - 1, r);
}
if (!m_data.empty())
{
ret.push_back(0);
for (auto const& i: m_data)
{
auto its = dataRef.equal_range(i.first);
if (its.first != its.second)
{
for (auto it = its.first; it != its.second; ++it)
{
bytesRef r(ret.data() + it->second, bytesPerDataRef);
toBigEndian(ret.size(), r);
}
for (auto b: i.second)
ret.push_back(b);
}
}
}
for (unsigned pos: sizeRef)
{
bytesRef r(ret.data() + pos, bytesPerDataRef);
toBigEndian(ret.size(), r);
}
return ret;
}