/*
This file is part of cpp-ethereum.
cpp-ethereum is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
cpp-ethereum is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with cpp-ethereum. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* @author Christian <c@ethdev.com>
* @date 2014
* Solidity abstract syntax tree.
*/
#include <algorithm>
#include <libsolidity/AST.h>
#include <libsolidity/ASTVisitor.h>
#include <libsolidity/Exceptions.h>
namespace dev
{
namespace solidity
{
void ContractDefinition::accept(ASTVisitor& _visitor)
{
if (_visitor.visit(*this))
{
listAccept(m_definedStructs, _visitor);
listAccept(m_stateVariables, _visitor);
listAccept(m_definedFunctions, _visitor);
}
_visitor.endVisit(*this);
}
void StructDefinition::accept(ASTVisitor& _visitor)
{
if (_visitor.visit(*this))
{
listAccept(m_members, _visitor);
}
_visitor.endVisit(*this);
}
void ParameterList::accept(ASTVisitor& _visitor)
{
if (_visitor.visit(*this))
{
listAccept(m_parameters, _visitor);
}
_visitor.endVisit(*this);
}
void FunctionDefinition::accept(ASTVisitor& _visitor)
{
if (_visitor.visit(*this))
{
m_parameters->accept(_visitor);
if (m_returnParameters)
m_returnParameters->accept(_visitor);
m_body->accept(_visitor);
}
_visitor.endVisit(*this);
}
void VariableDeclaration::accept(ASTVisitor& _visitor)
{
if (_visitor.visit(*this))
{
if (m_typeName)
m_typeName->accept(_visitor);
}
_visitor.endVisit(*this);
}
void TypeName::accept(ASTVisitor& _visitor)
{
_visitor.visit(*this);
_visitor.endVisit(*this);
}
void ElementaryTypeName::accept(ASTVisitor& _visitor)
{
_visitor.visit(*this);
_visitor.endVisit(*this);
}
void UserDefinedTypeName::accept(ASTVisitor& _visitor)
{
_visitor.visit(*this);
_visitor.endVisit(*this);
}
void Mapping::accept(ASTVisitor& _visitor)
{
if (_visitor.visit(*this))
{
m_keyType->accept(_visitor);
m_valueType->accept(_visitor);
}
_visitor.endVisit(*this);
}
void Statement::accept(ASTVisitor& _visitor)
{
_visitor.visit(*this);
_visitor.endVisit(*this);
}
void Block::accept(ASTVisitor& _visitor)
{
if (_visitor.visit(*this))
{
listAccept(m_statements, _visitor);
}
_visitor.endVisit(*this);
}
void IfStatement::accept(ASTVisitor& _visitor)
{
if (_visitor.visit(*this))
{
m_condition->accept(_visitor);
m_trueBody->accept(_visitor);
if (m_falseBody)
m_falseBody->accept(_visitor);
}
_visitor.endVisit(*this);
}
void BreakableStatement::accept(ASTVisitor& _visitor)
{
_visitor.visit(*this);
_visitor.endVisit(*this);
}
void WhileStatement::accept(ASTVisitor& _visitor)
{
if (_visitor.visit(*this))
{
m_condition->accept(_visitor);
m_body->accept(_visitor);
}
_visitor.endVisit(*this);
}
void Continue::accept(ASTVisitor& _visitor)
{
_visitor.visit(*this);
_visitor.endVisit(*this);
}
void Break::accept(ASTVisitor& _visitor)
{
_visitor.visit(*this);
_visitor.endVisit(*this);
}
void Return::accept(ASTVisitor& _visitor)
{
if (_visitor.visit(*this))
{
if (m_expression)
m_expression->accept(_visitor);
}
_visitor.endVisit(*this);
}
void VariableDefinition::accept(ASTVisitor& _visitor)
{
if (_visitor.visit(*this))
{
m_variable->accept(_visitor);
if (m_value)
m_value->accept(_visitor);
}
_visitor.endVisit(*this);
}
void Assignment::accept(ASTVisitor& _visitor)
{
if (_visitor.visit(*this))
{
m_leftHandSide->accept(_visitor);
m_rightHandSide->accept(_visitor);
}
_visitor.endVisit(*this);
}
void UnaryOperation::accept(ASTVisitor& _visitor)
{
if (_visitor.visit(*this))
{
m_subExpression->accept(_visitor);
}
_visitor.endVisit(*this);
}
void BinaryOperation::accept(ASTVisitor& _visitor)
{
if (_visitor.visit(*this))
{
m_left->accept(_visitor);
m_right->accept(_visitor);
}
_visitor.endVisit(*this);
}
void FunctionCall::accept(ASTVisitor& _visitor)
{
if (_visitor.visit(*this))
{
m_expression->accept(_visitor);
listAccept(m_arguments, _visitor);
}
_visitor.endVisit(*this);
}
void MemberAccess::accept(ASTVisitor& _visitor)
{
if (_visitor.visit(*this))
{
m_expression->accept(_visitor);
}
_visitor.endVisit(*this);
}
void IndexAccess::accept(ASTVisitor& _visitor)
{
if (_visitor.visit(*this))
{
m_base->accept(_visitor);
m_index->accept(_visitor);
}
_visitor.endVisit(*this);
}
void Identifier::accept(ASTVisitor& _visitor)
{
_visitor.visit(*this);
_visitor.endVisit(*this);
}
void ElementaryTypeNameExpression::accept(ASTVisitor& _visitor)
{
_visitor.visit(*this);
_visitor.endVisit(*this);
}
void Literal::accept(ASTVisitor& _visitor)
{
_visitor.visit(*this);
_visitor.endVisit(*this);
}
void Statement::expectType(Expression& _expression, const Type& _expectedType)
{
if (!_expression.checkTypeRequirements()->isImplicitlyConvertibleTo(_expectedType))
BOOST_THROW_EXCEPTION(TypeError() << errinfo_comment("Type not implicitly convertible "
"to expected type."));
//@todo provide more information to the exception
}
ptr<Type> Block::checkTypeRequirements()
{
for (ptr<Statement> const & statement : m_statements)
statement->checkTypeRequirements();
return ptr<Type>();
}
ptr<Type> IfStatement::checkTypeRequirements()
{
expectType(*m_condition, BoolType());
m_trueBody->checkTypeRequirements();
if (m_falseBody) m_falseBody->checkTypeRequirements();
return ptr<Type>();
}
ptr<Type> WhileStatement::checkTypeRequirements()
{
expectType(*m_condition, BoolType());
m_body->checkTypeRequirements();
return ptr<Type>();
}
ptr<Type> Continue::checkTypeRequirements()
{
return ptr<Type>();
}
ptr<Type> Break::checkTypeRequirements()
{
return ptr<Type>();
}
ptr<Type> Return::checkTypeRequirements()
{
BOOST_ASSERT(m_returnParameters != nullptr);
if (m_returnParameters->getParameters().size() != 1)
BOOST_THROW_EXCEPTION(TypeError() << errinfo_comment("Different number of arguments in "
"return statement than in returns "
"declaration."));
// this could later be changed such that the paramaters type is an anonymous struct type,
// but for now, we only allow one return parameter
expectType(*m_expression, *m_returnParameters->getParameters().front()->getType());
return ptr<Type>();
}
ptr<Type> VariableDefinition::checkTypeRequirements()
{
// Variables can be declared without type (with "var"), in which case the first assignment
// setsthe type.
// Note that assignments before the first declaration are legal because of the special scoping
// rules inherited from JavaScript.
if (m_value)
{
if (m_variable->getType())
{
expectType(*m_value, *m_variable->getType());
}
else
{
// no type declared and no previous assignment, infer the type
m_variable->setType(m_value->checkTypeRequirements());
}
}
return ptr<Type>();
}
ptr<Type> Assignment::checkTypeRequirements()
{
//@todo lefthandside actually has to be assignable
// add a feature to the type system to check that
expectType(*m_rightHandSide, *m_leftHandSide->checkTypeRequirements());
m_type = m_leftHandSide->getType();
if (m_assigmentOperator != Token::ASSIGN)
{
// complex assignment
if (!m_type->acceptsBinaryOperator(Token::AssignmentToBinaryOp(m_assigmentOperator)))
BOOST_THROW_EXCEPTION(TypeError() << errinfo_comment("Operator not compatible with type."));
}
return m_type;
}
ptr<Type> UnaryOperation::checkTypeRequirements()
{
// INC, DEC, NOT, BIT_NOT, DELETE
m_type = m_subExpression->checkTypeRequirements();
if (m_type->acceptsUnaryOperator(m_operator))
BOOST_THROW_EXCEPTION(TypeError() << errinfo_comment("Unary operator not compatible with type."));
return m_type;
}
ptr<Type> BinaryOperation::checkTypeRequirements()
{
m_right->checkTypeRequirements();
m_left->checkTypeRequirements();
if (m_right->getType()->isImplicitlyConvertibleTo(*m_left->getType()))
m_commonType = m_left->getType();
else if (m_left->getType()->isImplicitlyConvertibleTo(*m_right->getType()))
m_commonType = m_right->getType();
else
BOOST_THROW_EXCEPTION(TypeError() << errinfo_comment("No common type found in binary operation."));
if (Token::isCompareOp(m_operator))
{
m_type = std::make_shared<BoolType>();
}
else
{
BOOST_ASSERT(Token::isBinaryOp(m_operator));
m_type = m_commonType;
if (!m_commonType->acceptsBinaryOperator(m_operator))
BOOST_THROW_EXCEPTION(TypeError() << errinfo_comment("Operator not compatible with type."));
}
return m_type;
}
ptr<Type> FunctionCall::checkTypeRequirements()
{
m_expression->checkTypeRequirements();
for (ptr<Expression> const & argument : m_arguments)
argument->checkTypeRequirements();
ptr<Type> expressionType = m_expression->getType();
Type::Category const category = expressionType->getCategory();
if (category == Type::Category::TYPE)
{
TypeType* type = dynamic_cast<TypeType*>(expressionType.get());
BOOST_ASSERT(type != nullptr);
//@todo for structs, we have to check the number of arguments to be equal to the
// number of non-mapping members
if (m_arguments.size() != 1)
BOOST_THROW_EXCEPTION(TypeError() << errinfo_comment("More than one argument for "
"explicit type conersion."));
if (!m_arguments.front()->getType()->isExplicitlyConvertibleTo(*type->getActualType()))
BOOST_THROW_EXCEPTION(TypeError() << errinfo_comment("Explicit type conversion not "
"allowed."));
m_type = type->getActualType();
}
else if (category == Type::Category::FUNCTION)
{
//@todo would be nice to create a struct type from the arguments
// and then ask if that is implicitly convertible to the struct represented by the
// function parameters
FunctionType* function = dynamic_cast<FunctionType*>(expressionType.get());
BOOST_ASSERT(function != nullptr);
FunctionDefinition const& fun = function->getFunction();
vecptr<VariableDeclaration> const& parameters = fun.getParameters();
if (parameters.size() != m_arguments.size())
BOOST_THROW_EXCEPTION(TypeError() << errinfo_comment("Wrong argument count for "
"function call."));
for (size_t i = 0; i < m_arguments.size(); ++i)
{
if (!m_arguments[i]->getType()->isImplicitlyConvertibleTo(*parameters[i]->getType()))
BOOST_THROW_EXCEPTION(TypeError() << errinfo_comment("Invalid type for argument in "
"function call."));
}
// @todo actually the return type should be an anonymous struct,
// but we change it to the type of the first return value until we have structs
if (fun.getReturnParameterList()->getParameters().empty())
m_type = std::make_shared<VoidType>();
else
m_type = fun.getReturnParameterList()->getParameters().front()->getType();
}
else
{
BOOST_THROW_EXCEPTION(TypeError() << errinfo_comment("Type does not support invocation."));
}
return m_type;
}
ptr<Type> MemberAccess::checkTypeRequirements()
{
BOOST_ASSERT(false); // not yet implemented
// m_type = ;
return m_type;
}
ptr<Type> IndexAccess::checkTypeRequirements()
{
BOOST_ASSERT(false); // not yet implemented
// m_type = ;
return m_type;
}
ptr<Type> Identifier::checkTypeRequirements()
{
BOOST_ASSERT(m_referencedDeclaration != nullptr);
//@todo these dynamic casts here are not really nice...
// is i useful to have an AST visitor here?
// or can this already be done in NameAndTypeResolver?
// the only problem we get there is that in
// var x;
// x = 2;
// var y = x;
// the type of x is not yet determined.
VariableDeclaration* variable = dynamic_cast<VariableDeclaration*>(m_referencedDeclaration);
if (variable != nullptr)
{
if (variable->getType().get() == nullptr)
BOOST_THROW_EXCEPTION(TypeError() << errinfo_comment("Variable referenced before type "
"could be determined."));
m_type = variable->getType();
return m_type;
}
//@todo can we unify these with TypeName::toType()?
StructDefinition* structDef = dynamic_cast<StructDefinition*>(m_referencedDeclaration);
if (structDef != nullptr)
{
// note that we do not have a struct type here
m_type = std::make_shared<TypeType>(std::make_shared<StructType>(*structDef));
return m_type;
}
FunctionDefinition* functionDef = dynamic_cast<FunctionDefinition*>(m_referencedDeclaration);
if (functionDef != nullptr)
{
// a function reference is not a TypeType, because calling a TypeType converts to the type.
// Calling a function (e.g. function(12), otherContract.function(34)) does not do a type
// conversion.
m_type = std::make_shared<FunctionType>(*functionDef);
return m_type;
}
ContractDefinition* contractDef = dynamic_cast<ContractDefinition*>(m_referencedDeclaration);
if (contractDef != nullptr)
{
m_type = std::make_shared<TypeType>(std::make_shared<ContractType>(*contractDef));
return m_type;
}
BOOST_ASSERT(false); // declaration reference of unknown/forbidden type
return m_type;
}
ptr<Type> ElementaryTypeNameExpression::checkTypeRequirements()
{
m_type = std::make_shared<TypeType>(Type::fromElementaryTypeName(m_typeToken));
return m_type;
}
ptr<Type> Literal::checkTypeRequirements()
{
m_type = Type::forLiteral(*this);
return m_type;
}
}
}