import { BlockchainLifecycle, devConstants, web3Factory } from '@0xproject/dev-utils'; import { AssetProxyId } from '@0xproject/types'; import { BigNumber } from '@0xproject/utils'; import { Web3Wrapper } from '@0xproject/web3-wrapper'; import BN = require('bn.js'); import * as chai from 'chai'; import { LogWithDecodedArgs, TransactionReceiptWithDecodedLogs } from 'ethereum-types'; import ethUtil = require('ethereumjs-util'); import * as Web3 from 'web3'; import { TestLibBytesContract } from '../../src/generated_contract_wrappers/test_lib_bytes'; import { artifacts } from '../../src/utils/artifacts'; import { chaiSetup } from '../../src/utils/chai_setup'; import { constants } from '../../src/utils/constants'; import { provider, txDefaults, web3Wrapper } from '../../src/utils/web3_wrapper'; chaiSetup.configure(); const expect = chai.expect; const blockchainLifecycle = new BlockchainLifecycle(web3Wrapper); describe('LibBytes', () => { let owner: string; let libBytes: TestLibBytesContract; const byteArrayShorterThan32Bytes = '0x012345'; const byteArrayShorterThan20Bytes = byteArrayShorterThan32Bytes; const byteArrayLongerThan32Bytes = '0x0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef'; const byteArrayLongerThan32BytesFirstBytesSwapped = '0x2301456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef'; const byteArrayLongerThan32BytesLastBytesSwapped = '0x0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef0123456789abefcd'; let testAddress: string; const testBytes32 = '0x102030405060708090a0b0c0d0e0f0102030405060708090a0b0c0d0e0f01020'; const testUint256 = new BigNumber(testBytes32, 16); before(async () => { await blockchainLifecycle.startAsync(); }); after(async () => { await blockchainLifecycle.revertAsync(); }); before(async () => { // Setup accounts & addresses const accounts = await web3Wrapper.getAvailableAddressesAsync(); owner = accounts[0]; testAddress = accounts[1]; // Deploy LibBytes libBytes = await TestLibBytesContract.deployFrom0xArtifactAsync(artifacts.TestLibBytes, provider, txDefaults); // Verify lengths of test data const byteArrayShorterThan32BytesLength = ethUtil.toBuffer(byteArrayShorterThan32Bytes).byteLength; expect(byteArrayShorterThan32BytesLength).to.be.lessThan(32); const byteArrayLongerThan32BytesLength = ethUtil.toBuffer(byteArrayLongerThan32Bytes).byteLength; expect(byteArrayLongerThan32BytesLength).to.be.greaterThan(32); const testBytes32Length = ethUtil.toBuffer(testBytes32).byteLength; expect(testBytes32Length).to.be.equal(32); }); beforeEach(async () => { await blockchainLifecycle.startAsync(); }); afterEach(async () => { await blockchainLifecycle.revertAsync(); }); describe('popByte', () => { it('should revert if length is 0', async () => { return expect(libBytes.publicPopByte.callAsync(constants.NULL_BYTES)).to.be.rejectedWith(constants.REVERT); }); it('should pop the last byte from the input and return it', async () => { const [newBytes, poppedByte] = await libBytes.publicPopByte.callAsync(byteArrayLongerThan32Bytes); const expectedNewBytes = byteArrayLongerThan32Bytes.slice(0, -2); const expectedPoppedByte = `0x${byteArrayLongerThan32Bytes.slice(-2)}`; expect(newBytes).to.equal(expectedNewBytes); expect(poppedByte).to.equal(expectedPoppedByte); }); }); describe('popAddress', () => { it('should revert if length is less than 20', async () => { return expect(libBytes.publicPopAddress.callAsync(byteArrayShorterThan20Bytes)).to.be.rejectedWith( constants.REVERT, ); }); it('should pop the last 20 bytes from the input and return it', async () => { const [newBytes, poppedAddress] = await libBytes.publicPopAddress.callAsync(byteArrayLongerThan32Bytes); const expectedNewBytes = byteArrayLongerThan32Bytes.slice(0, -40); const expectedPoppedAddress = `0x${byteArrayLongerThan32Bytes.slice(-40)}`; expect(newBytes).to.equal(expectedNewBytes); expect(poppedAddress).to.equal(expectedPoppedAddress); }); }); describe('areBytesEqual', () => { it('should return true if byte arrays are equal (both arrays < 32 bytes)', async () => { const areBytesEqual = await libBytes.publicAreBytesEqual.callAsync( byteArrayShorterThan32Bytes, byteArrayShorterThan32Bytes, ); return expect(areBytesEqual).to.be.true(); }); it('should return true if byte arrays are equal (both arrays > 32 bytes)', async () => { const areBytesEqual = await libBytes.publicAreBytesEqual.callAsync( byteArrayLongerThan32Bytes, byteArrayLongerThan32Bytes, ); return expect(areBytesEqual).to.be.true(); }); it('should return false if byte arrays are not equal (first array < 32 bytes, second array > 32 bytes)', async () => { const areBytesEqual = await libBytes.publicAreBytesEqual.callAsync( byteArrayShorterThan32Bytes, byteArrayLongerThan32Bytes, ); return expect(areBytesEqual).to.be.false(); }); it('should return false if byte arrays are not equal (first array > 32 bytes, second array < 32 bytes)', async () => { const areBytesEqual = await libBytes.publicAreBytesEqual.callAsync( byteArrayLongerThan32Bytes, byteArrayShorterThan32Bytes, ); return expect(areBytesEqual).to.be.false(); }); it('should return false if byte arrays are not equal (same length, but a byte in first word differs)', async () => { const areBytesEqual = await libBytes.publicAreBytesEqual.callAsync( byteArrayLongerThan32BytesFirstBytesSwapped, byteArrayLongerThan32Bytes, ); return expect(areBytesEqual).to.be.false(); }); it('should return false if byte arrays are not equal (same length, but a byte in last word differs)', async () => { const areBytesEqual = await libBytes.publicAreBytesEqual.callAsync( byteArrayLongerThan32BytesLastBytesSwapped, byteArrayLongerThan32Bytes, ); return expect(areBytesEqual).to.be.false(); }); }); describe('readAddress', () => { it('should successfully read address when the address takes up the whole array)', async () => { const byteArray = ethUtil.addHexPrefix(testAddress); const testAddressOffset = new BigNumber(0); const address = await libBytes.publicReadAddress.callAsync(byteArray, testAddressOffset); return expect(address).to.be.equal(testAddress); }); it('should successfully read address when it is offset in the array)', async () => { const addressByteArrayBuffer = ethUtil.toBuffer(testAddress); const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef'); const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, addressByteArrayBuffer]); const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer); const testAddressOffset = new BigNumber(prefixByteArrayBuffer.byteLength); const address = await libBytes.publicReadAddress.callAsync(combinedByteArray, testAddressOffset); return expect(address).to.be.equal(testAddress); }); it('should fail if the byte array is too short to hold an address)', async () => { const shortByteArray = '0xabcdef'; const offset = new BigNumber(0); return expect(libBytes.publicReadAddress.callAsync(shortByteArray, offset)).to.be.rejectedWith( constants.REVERT, ); }); it('should fail if the length between the offset and end of the byte array is too short to hold an address)', async () => { const byteArray = ethUtil.addHexPrefix(testAddress); const badOffset = new BigNumber(ethUtil.toBuffer(byteArray).byteLength); return expect(libBytes.publicReadAddress.callAsync(byteArray, badOffset)).to.be.rejectedWith( constants.REVERT, ); }); }); /// @TODO Implement test cases for writeAddress. Test template below. /// Currently, the generated contract wrappers do not support this library's write methods. /* describe('writeAddress', () => { it('should successfully write address when the address takes up the whole array)', async () => {}); it('should successfully write address when it is offset in the array)', async () => {}); it('should fail if the byte array is too short to hold an address)', async () => {}); it('should fail if the length between the offset and end of the byte array is too short to hold an address)', async () => {}); }); */ describe('readBytes32', () => { it('should successfully read bytes32 when the bytes32 takes up the whole array)', async () => { const testBytes32Offset = new BigNumber(0); const bytes32 = await libBytes.publicReadBytes32.callAsync(testBytes32, testBytes32Offset); return expect(bytes32).to.be.equal(testBytes32); }); it('should successfully read bytes32 when it is offset in the array)', async () => { const bytes32ByteArrayBuffer = ethUtil.toBuffer(testBytes32); const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef'); const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, bytes32ByteArrayBuffer]); const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer); const testAddressOffset = new BigNumber(prefixByteArrayBuffer.byteLength); const bytes32 = await libBytes.publicReadBytes32.callAsync(combinedByteArray, testAddressOffset); return expect(bytes32).to.be.equal(testBytes32); }); it('should fail if the byte array is too short to hold a bytes32)', async () => { const offset = new BigNumber(0); return expect(libBytes.publicReadBytes32.callAsync(byteArrayShorterThan32Bytes, offset)).to.be.rejectedWith( constants.REVERT, ); }); it('should fail if the length between the offset and end of the byte array is too short to hold a bytes32)', async () => { const badOffset = new BigNumber(ethUtil.toBuffer(testBytes32).byteLength); return expect(libBytes.publicReadBytes32.callAsync(testBytes32, badOffset)).to.be.rejectedWith( constants.REVERT, ); }); }); /// @TODO Implement test cases for writeBytes32. Test template below. /// Currently, the generated contract wrappers do not support this library's write methods. /* describe('writeBytes32', () => { it('should successfully write bytes32 when the address takes up the whole array)', async () => {}); it('should successfully write bytes32 when it is offset in the array)', async () => {}); it('should fail if the byte array is too short to hold a bytes32)', async () => {}); it('should fail if the length between the offset and end of the byte array is too short to hold a bytes32)', async () => {}); }); */ describe('readUint256', () => { it('should successfully read uint256 when the uint256 takes up the whole array)', async () => { const formattedTestUint256 = new BN(testUint256.toString(10)); const testUint256AsBuffer = ethUtil.toBuffer(formattedTestUint256); const byteArray = ethUtil.bufferToHex(testUint256AsBuffer); const testUint256Offset = new BigNumber(0); const uint256 = await libBytes.publicReadUint256.callAsync(byteArray, testUint256Offset); return expect(uint256).to.bignumber.equal(testUint256); }); it('should successfully read uint256 when it is offset in the array)', async () => { const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef'); const formattedTestUint256 = new BN(testUint256.toString(10)); const testUint256AsBuffer = ethUtil.toBuffer(formattedTestUint256); const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, testUint256AsBuffer]); const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer); const testUint256Offset = new BigNumber(prefixByteArrayBuffer.byteLength); const uint256 = await libBytes.publicReadUint256.callAsync(combinedByteArray, testUint256Offset); return expect(uint256).to.bignumber.equal(testUint256); }); it('should fail if the byte array is too short to hold a uint256)', async () => { const offset = new BigNumber(0); return expect(libBytes.publicReadUint256.callAsync(byteArrayShorterThan32Bytes, offset)).to.be.rejectedWith( constants.REVERT, ); }); it('should fail if the length between the offset and end of the byte array is too short to hold a uint256)', async () => { const formattedTestUint256 = new BN(testUint256.toString(10)); const testUint256AsBuffer = ethUtil.toBuffer(formattedTestUint256); const byteArray = ethUtil.bufferToHex(testUint256AsBuffer); const badOffset = new BigNumber(testUint256AsBuffer.byteLength); return expect(libBytes.publicReadUint256.callAsync(byteArray, badOffset)).to.be.rejectedWith( constants.REVERT, ); }); }); /// @TODO Implement test cases for writeUint256. Test template below. /// Currently, the generated contract wrappers do not support this library's write methods. /* describe('writeUint256', () => { it('should successfully write uint256 when the address takes up the whole array)', async () => {}); it('should successfully write uint256 when it is offset in the array)', async () => {}); it('should fail if the byte array is too short to hold a uint256)', async () => {}); it('should fail if the length between the offset and end of the byte array is too short to hold a uint256)', async () => {}); }); */ describe('readFirst4', () => { it('should revert if byte array has a length < 4', async () => { const byteArrayLessThan4Bytes = '0x010101'; return expect(libBytes.publicReadFirst4.callAsync(byteArrayLessThan4Bytes)).to.be.rejectedWith( constants.REVERT, ); }); it('should return the first 4 bytes of a byte array of arbitrary length', async () => { const first4Bytes = await libBytes.publicReadFirst4.callAsync(byteArrayLongerThan32Bytes); const expectedFirst4Bytes = byteArrayLongerThan32Bytes.slice(0, 10); expect(first4Bytes).to.equal(expectedFirst4Bytes); }); }); });