1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
|
package integration
import (
"fmt"
"time"
"github.com/dexon-foundation/dexon-consensus-core/core/test"
"github.com/dexon-foundation/dexon-consensus-core/core/types"
)
// Errors when calculating statistics for events.
var (
ErrUnknownEvent = fmt.Errorf("unknown event")
ErrUnknownConsensusEventType = fmt.Errorf("unknown consensus event type")
)
// StatsSet represents accumulatee result of a group of related events
// (ex. All events from one node).
type StatsSet struct {
ProposedBlockCount int
ReceivedBlockCount int
StronglyAckedBlockCount int
TotalOrderedBlockCount int
DeliveredBlockCount int
ProposingLatency time.Duration
ReceivingLatency time.Duration
PrepareExecLatency time.Duration
ProcessExecLatency time.Duration
}
// newBlockProposeEvent accumulates a block proposing event.
func (s *StatsSet) newBlockProposeEvent(
e *test.Event, payload *consensusEventPayload, history []*test.Event) {
// Find previous block proposing event.
if e.ParentHistoryIndex != -1 {
parentEvent := history[e.ParentHistoryIndex]
s.ProposingLatency +=
e.Time.Sub(parentEvent.Time) - parentEvent.ExecInterval
}
s.PrepareExecLatency += e.ExecInterval
s.ProposedBlockCount++
}
// newBlockReceiveEvent accumulates a block received event.
func (s *StatsSet) newBlockReceiveEvent(
e *test.Event,
payload *consensusEventPayload,
history []*test.Event,
app *test.App) {
// Find previous block proposing event.
parentEvent := history[e.ParentHistoryIndex]
s.ReceivingLatency +=
e.Time.Sub(parentEvent.Time) - parentEvent.ExecInterval
s.ProcessExecLatency += e.ExecInterval
s.ReceivedBlockCount++
// Find statistics from test.App
block := payload.PiggyBack.(*types.Block)
app.Check(func(app *test.App) {
// Is this block strongly acked?
if _, exists := app.Acked[block.Hash]; !exists {
return
}
s.StronglyAckedBlockCount++
// Is this block total ordered?
if _, exists := app.TotalOrderedByHash[block.Hash]; !exists {
return
}
s.TotalOrderedBlockCount++
// Is this block delivered?
if _, exists := app.Delivered[block.Hash]; !exists {
return
}
s.DeliveredBlockCount++
})
}
// done would divide the latencies we cached with related event count. This way
// to calculate average latency is more accurate.
func (s *StatsSet) done(nodeCount int) {
s.ProposingLatency /= time.Duration(s.ProposedBlockCount - nodeCount)
s.ReceivingLatency /= time.Duration(s.ReceivedBlockCount)
s.PrepareExecLatency /= time.Duration(s.ProposedBlockCount)
s.ProcessExecLatency /= time.Duration(s.ReceivedBlockCount)
}
// Stats is statistics of a slice of test.Event generated by nodes.
type Stats struct {
ByNode map[types.NodeID]*StatsSet
All *StatsSet
BPS float64
ExecutionTime time.Duration
}
// NewStats constructs an Stats instance by providing a slice of
// test.Event.
func NewStats(
history []*test.Event, apps map[types.NodeID]*test.App) (
stats *Stats, err error) {
stats = &Stats{
ByNode: make(map[types.NodeID]*StatsSet),
All: &StatsSet{},
}
if err = stats.calculate(history, apps); err != nil {
stats = nil
}
stats.summary(history)
return
}
func (stats *Stats) calculate(
history []*test.Event, apps map[types.NodeID]*test.App) error {
defer func() {
stats.All.done(len(stats.ByNode))
for _, set := range stats.ByNode {
set.done(1)
}
}()
for _, e := range history {
payload, ok := e.Payload.(*consensusEventPayload)
if !ok {
return ErrUnknownEvent
}
switch payload.Type {
case evtProposeBlock:
stats.All.newBlockProposeEvent(
e, payload, history)
stats.getStatsSetByNode(e.NodeID).newBlockProposeEvent(
e, payload, history)
case evtReceiveBlock:
stats.All.newBlockReceiveEvent(
e, payload, history, apps[e.NodeID])
stats.getStatsSetByNode(e.NodeID).newBlockReceiveEvent(
e, payload, history, apps[e.NodeID])
default:
return ErrUnknownConsensusEventType
}
}
return nil
}
func (stats *Stats) getStatsSetByNode(
vID types.NodeID) (s *StatsSet) {
s = stats.ByNode[vID]
if s == nil {
s = &StatsSet{}
stats.ByNode[vID] = s
}
return
}
func (stats *Stats) summary(history []*test.Event) {
// Find average delivered block count among all blocks.
totalConfirmedBlocks := 0
for _, s := range stats.ByNode {
totalConfirmedBlocks += s.DeliveredBlockCount
}
averageConfirmedBlocks := totalConfirmedBlocks / len(stats.ByNode)
// Find execution time.
// Note: it's a simplified way to calculate the execution time:
// the latest event might not be at the end of history when
// the number of worker routine is larger than 1.
stats.ExecutionTime = history[len(history)-1].Time.Sub(history[0].Time)
// Calculate BPS.
latencyAsSecond := stats.ExecutionTime.Nanoseconds() / (1000 * 1000 * 1000)
stats.BPS = float64(averageConfirmedBlocks) / float64(latencyAsSecond)
}
|