import { BlockchainLifecycle } from '@0xproject/dev-utils'; import { assetProxyUtils, generatePseudoRandomSalt } from '@0xproject/order-utils'; import { AssetProxyId } from '@0xproject/types'; import { BigNumber } from '@0xproject/utils'; import BN = require('bn.js'); import * as chai from 'chai'; import ethUtil = require('ethereumjs-util'); import { TestLibBytesContract } from '../../src/generated_contract_wrappers/test_lib_bytes'; import { artifacts } from '../../src/utils/artifacts'; import { expectRevertOrOtherErrorAsync, expectRevertOrOtherErrorAsync } from '../../src/utils/assertions'; import { assetProxyUtils } from '../../src/utils/asset_proxy_utils'; import { chaiSetup } from '../../src/utils/chai_setup'; import { constants } from '../../src/utils/constants'; import { provider, txDefaults, web3Wrapper } from '../../src/utils/web3_wrapper'; chaiSetup.configure(); const expect = chai.expect; const blockchainLifecycle = new BlockchainLifecycle(web3Wrapper); describe('LibBytes', () => { let libBytes: TestLibBytesContract; const byteArrayShorterThan32Bytes = '0x012345'; const byteArrayShorterThan20Bytes = byteArrayShorterThan32Bytes; const byteArrayLongerThan32Bytes = '0x0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef'; const byteArrayLongerThan32BytesFirstBytesSwapped = '0x2301456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef'; const byteArrayLongerThan32BytesLastBytesSwapped = '0x0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef0123456789abefcd'; let testAddress: string; const testBytes32 = '0x102030405060708090a0b0c0d0e0f0102030405060708090a0b0c0d0e0f01020'; const testUint256 = new BigNumber(testBytes32, 16); let shortData: string; let shortTestBytes: string; let shortTestBytesAsBuffer: Buffer; let wordOfData: string; let wordOfTestBytes: string; let wordOfTestBytesAsBuffer: Buffer; let longData: string; let longTestBytes: string; let longTestBytesAsBuffer: Buffer; before(async () => { await blockchainLifecycle.startAsync(); }); after(async () => { await blockchainLifecycle.revertAsync(); }); before(async () => { // Setup accounts & addresses const accounts = await web3Wrapper.getAvailableAddressesAsync(); testAddress = accounts[1]; // Deploy LibBytes libBytes = await TestLibBytesContract.deployFrom0xArtifactAsync(artifacts.TestLibBytes, provider, txDefaults); // Verify lengths of test data const byteArrayShorterThan32BytesLength = ethUtil.toBuffer(byteArrayShorterThan32Bytes).byteLength; expect(byteArrayShorterThan32BytesLength).to.be.lessThan(32); const byteArrayLongerThan32BytesLength = ethUtil.toBuffer(byteArrayLongerThan32Bytes).byteLength; expect(byteArrayLongerThan32BytesLength).to.be.greaterThan(32); const testBytes32Length = ethUtil.toBuffer(testBytes32).byteLength; expect(testBytes32Length).to.be.equal(32); // Create short test bytes shortData = '0xffffaa'; const encodedShortData = ethUtil.toBuffer(shortData); const shortDataLength = new BigNumber(encodedShortData.byteLength); const encodedShortDataLength = assetProxyUtils.encodeUint256(shortDataLength); shortTestBytesAsBuffer = Buffer.concat([encodedShortDataLength, encodedShortData]); shortTestBytes = ethUtil.bufferToHex(shortTestBytesAsBuffer); // Create test bytes one word in length wordOfData = ethUtil.bufferToHex(assetProxyUtils.encodeUint256(generatePseudoRandomSalt())); const encodedWordOfData = ethUtil.toBuffer(wordOfData); const wordOfDataLength = new BigNumber(encodedWordOfData.byteLength); const encodedWordOfDataLength = assetProxyUtils.encodeUint256(wordOfDataLength); wordOfTestBytesAsBuffer = Buffer.concat([encodedWordOfDataLength, encodedWordOfData]); wordOfTestBytes = ethUtil.bufferToHex(wordOfTestBytesAsBuffer); // Create long test bytes (combines short test bytes with word of test bytes) longData = ethUtil.bufferToHex(Buffer.concat([encodedShortData, encodedWordOfData])); const longDataLength = new BigNumber(encodedShortData.byteLength + encodedWordOfData.byteLength); const encodedLongDataLength = assetProxyUtils.encodeUint256(longDataLength); longTestBytesAsBuffer = Buffer.concat([encodedLongDataLength, encodedShortData, encodedWordOfData]); longTestBytes = ethUtil.bufferToHex(longTestBytesAsBuffer); }); beforeEach(async () => { await blockchainLifecycle.startAsync(); }); afterEach(async () => { await blockchainLifecycle.revertAsync(); }); describe('popByte', () => { it('should revert if length is 0', async () => { return expectRevertOrOtherErrorAsync( libBytes.publicPopByte.callAsync(constants.NULL_BYTES), constants.LIB_BYTES_GT_ZERO_LENGTH_REQUIRED, ); }); it('should pop the last byte from the input and return it', async () => { const [newBytes, poppedByte] = await libBytes.publicPopByte.callAsync(byteArrayLongerThan32Bytes); const expectedNewBytes = byteArrayLongerThan32Bytes.slice(0, -2); const expectedPoppedByte = `0x${byteArrayLongerThan32Bytes.slice(-2)}`; expect(newBytes).to.equal(expectedNewBytes); expect(poppedByte).to.equal(expectedPoppedByte); }); }); describe('popAddress', () => { it('should revert if length is less than 20', async () => { return expectRevertOrOtherErrorAsync( libBytes.publicPopAddress.callAsync(byteArrayShorterThan20Bytes), constants.LIB_BYTES_GTE_20_LENGTH_REQUIRED, ); }); it('should pop the last 20 bytes from the input and return it', async () => { const [newBytes, poppedAddress] = await libBytes.publicPopAddress.callAsync(byteArrayLongerThan32Bytes); const expectedNewBytes = byteArrayLongerThan32Bytes.slice(0, -40); const expectedPoppedAddress = `0x${byteArrayLongerThan32Bytes.slice(-40)}`; expect(newBytes).to.equal(expectedNewBytes); expect(poppedAddress).to.equal(expectedPoppedAddress); }); }); describe('areBytesEqual', () => { it('should return true if byte arrays are equal (both arrays < 32 bytes)', async () => { const areBytesEqual = await libBytes.publicAreBytesEqual.callAsync( byteArrayShorterThan32Bytes, byteArrayShorterThan32Bytes, ); return expect(areBytesEqual).to.be.true(); }); it('should return true if byte arrays are equal (both arrays > 32 bytes)', async () => { const areBytesEqual = await libBytes.publicAreBytesEqual.callAsync( byteArrayLongerThan32Bytes, byteArrayLongerThan32Bytes, ); return expect(areBytesEqual).to.be.true(); }); it('should return false if byte arrays are not equal (first array < 32 bytes, second array > 32 bytes)', async () => { const areBytesEqual = await libBytes.publicAreBytesEqual.callAsync( byteArrayShorterThan32Bytes, byteArrayLongerThan32Bytes, ); return expect(areBytesEqual).to.be.false(); }); it('should return false if byte arrays are not equal (first array > 32 bytes, second array < 32 bytes)', async () => { const areBytesEqual = await libBytes.publicAreBytesEqual.callAsync( byteArrayLongerThan32Bytes, byteArrayShorterThan32Bytes, ); return expect(areBytesEqual).to.be.false(); }); it('should return false if byte arrays are not equal (same length, but a byte in first word differs)', async () => { const areBytesEqual = await libBytes.publicAreBytesEqual.callAsync( byteArrayLongerThan32BytesFirstBytesSwapped, byteArrayLongerThan32Bytes, ); return expect(areBytesEqual).to.be.false(); }); it('should return false if byte arrays are not equal (same length, but a byte in last word differs)', async () => { const areBytesEqual = await libBytes.publicAreBytesEqual.callAsync( byteArrayLongerThan32BytesLastBytesSwapped, byteArrayLongerThan32Bytes, ); return expect(areBytesEqual).to.be.false(); }); }); describe('readAddress', () => { it('should successfully read address when the address takes up the whole array)', async () => { const byteArray = ethUtil.addHexPrefix(testAddress); const testAddressOffset = new BigNumber(0); const address = await libBytes.publicReadAddress.callAsync(byteArray, testAddressOffset); return expect(address).to.be.equal(testAddress); }); it('should successfully read address when it is offset in the array)', async () => { const addressByteArrayBuffer = ethUtil.toBuffer(testAddress); const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef'); const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, addressByteArrayBuffer]); const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer); const testAddressOffset = new BigNumber(prefixByteArrayBuffer.byteLength); const address = await libBytes.publicReadAddress.callAsync(combinedByteArray, testAddressOffset); return expect(address).to.be.equal(testAddress); }); it('should fail if the byte array is too short to hold an address)', async () => { const shortByteArray = '0xabcdef'; const offset = new BigNumber(0); return expectRevertOrOtherErrorAsync( libBytes.publicReadAddress.callAsync(shortByteArray, offset), constants.LIB_BYTES_GTE_20_LENGTH_REQUIRED, ); }); it('should fail if the length between the offset and end of the byte array is too short to hold an address)', async () => { const byteArray = ethUtil.addHexPrefix(testAddress); const badOffset = new BigNumber(ethUtil.toBuffer(byteArray).byteLength); return expectRevertOrOtherErrorAsync( libBytes.publicReadAddress.callAsync(byteArray, badOffset), constants.LIB_BYTES_GTE_20_LENGTH_REQUIRED, ); }); }); /// @TODO Implement test cases for writeAddress. Test template below. /// Currently, the generated contract wrappers do not support this library's write methods. /* describe('writeAddress', () => { it('should successfully write address when the address takes up the whole array)', async () => {}); it('should successfully write address when it is offset in the array)', async () => {}); it('should fail if the byte array is too short to hold an address)', async () => {}); it('should fail if the length between the offset and end of the byte array is too short to hold an address)', async () => {}); }); */ describe('readBytes32', () => { it('should successfully read bytes32 when the bytes32 takes up the whole array)', async () => { const testBytes32Offset = new BigNumber(0); const bytes32 = await libBytes.publicReadBytes32.callAsync(testBytes32, testBytes32Offset); return expect(bytes32).to.be.equal(testBytes32); }); it('should successfully read bytes32 when it is offset in the array)', async () => { const bytes32ByteArrayBuffer = ethUtil.toBuffer(testBytes32); const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef'); const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, bytes32ByteArrayBuffer]); const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer); const testAddressOffset = new BigNumber(prefixByteArrayBuffer.byteLength); const bytes32 = await libBytes.publicReadBytes32.callAsync(combinedByteArray, testAddressOffset); return expect(bytes32).to.be.equal(testBytes32); }); it('should fail if the byte array is too short to hold a bytes32)', async () => { const offset = new BigNumber(0); return expectRevertOrOtherErrorAsync( libBytes.publicReadBytes32.callAsync(byteArrayShorterThan32Bytes, offset), constants.LIB_BYTES_GTE_32_LENGTH_REQUIRED, ); }); it('should fail if the length between the offset and end of the byte array is too short to hold a bytes32)', async () => { const badOffset = new BigNumber(ethUtil.toBuffer(testBytes32).byteLength); return expectRevertOrOtherErrorAsync( libBytes.publicReadBytes32.callAsync(testBytes32, badOffset), constants.LIB_BYTES_GTE_32_LENGTH_REQUIRED, ); }); }); /// @TODO Implement test cases for writeBytes32. Test template below. /// Currently, the generated contract wrappers do not support this library's write methods. /* describe('writeBytes32', () => { it('should successfully write bytes32 when the address takes up the whole array)', async () => {}); it('should successfully write bytes32 when it is offset in the array)', async () => {}); it('should fail if the byte array is too short to hold a bytes32)', async () => {}); it('should fail if the length between the offset and end of the byte array is too short to hold a bytes32)', async () => {}); }); */ describe('readUint256', () => { it('should successfully read uint256 when the uint256 takes up the whole array)', async () => { const formattedTestUint256 = new BN(testUint256.toString(10)); const testUint256AsBuffer = ethUtil.toBuffer(formattedTestUint256); const byteArray = ethUtil.bufferToHex(testUint256AsBuffer); const testUint256Offset = new BigNumber(0); const uint256 = await libBytes.publicReadUint256.callAsync(byteArray, testUint256Offset); return expect(uint256).to.bignumber.equal(testUint256); }); it('should successfully read uint256 when it is offset in the array)', async () => { const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef'); const formattedTestUint256 = new BN(testUint256.toString(10)); const testUint256AsBuffer = ethUtil.toBuffer(formattedTestUint256); const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, testUint256AsBuffer]); const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer); const testUint256Offset = new BigNumber(prefixByteArrayBuffer.byteLength); const uint256 = await libBytes.publicReadUint256.callAsync(combinedByteArray, testUint256Offset); return expect(uint256).to.bignumber.equal(testUint256); }); it('should fail if the byte array is too short to hold a uint256)', async () => { const offset = new BigNumber(0); return expectRevertOrOtherErrorAsync( libBytes.publicReadUint256.callAsync(byteArrayShorterThan32Bytes, offset), constants.LIB_BYTES_GTE_32_LENGTH_REQUIRED, ); }); it('should fail if the length between the offset and end of the byte array is too short to hold a uint256)', async () => { const formattedTestUint256 = new BN(testUint256.toString(10)); const testUint256AsBuffer = ethUtil.toBuffer(formattedTestUint256); const byteArray = ethUtil.bufferToHex(testUint256AsBuffer); const badOffset = new BigNumber(testUint256AsBuffer.byteLength); return expectRevertOrOtherErrorAsync( libBytes.publicReadUint256.callAsync(byteArray, badOffset), constants.LIB_BYTES_GTE_32_LENGTH_REQUIRED, ); }); }); /// @TODO Implement test cases for writeUint256. Test template below. /// Currently, the generated contract wrappers do not support this library's write methods. /* describe('writeUint256', () => { it('should successfully write uint256 when the address takes up the whole array)', async () => {}); it('should successfully write uint256 when it is offset in the array)', async () => {}); it('should fail if the byte array is too short to hold a uint256)', async () => {}); it('should fail if the length between the offset and end of the byte array is too short to hold a uint256)', async () => {}); }); */ describe('readFirst4', () => { // AssertionError: expected promise to be rejected with an error including 'revert' but it was fulfilled with '0x08c379a0' it('should revert if byte array has a length < 4', async () => { const byteArrayLessThan4Bytes = '0x010101'; return expectRevertOrOtherErrorAsync( libBytes.publicReadFirst4.callAsync(byteArrayLessThan4Bytes), constants.LIB_BYTES_GTE_4_LENGTH_REQUIRED, ); }); it('should return the first 4 bytes of a byte array of arbitrary length', async () => { const first4Bytes = await libBytes.publicReadFirst4.callAsync(byteArrayLongerThan32Bytes); const expectedFirst4Bytes = byteArrayLongerThan32Bytes.slice(0, 10); expect(first4Bytes).to.equal(expectedFirst4Bytes); }); }); describe('readBytes', () => { it('should successfully read short, nested array of bytes when it takes up the whole array', async () => { const testBytesOffset = new BigNumber(0); const bytes = await libBytes.publicReadBytes.callAsync(shortTestBytes, testBytesOffset); return expect(bytes).to.be.equal(shortData); }); it('should successfully read short, nested array of bytes when it is offset in the array', async () => { const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef'); const shortDataAsBuffer = ethUtil.toBuffer(shortData); const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, shortTestBytesAsBuffer]); const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer); const testUint256Offset = new BigNumber(prefixByteArrayBuffer.byteLength); const bytes = await libBytes.publicReadBytes.callAsync(combinedByteArray, testUint256Offset); return expect(bytes).to.be.equal(shortData); }); it('should successfully read a nested array of bytes - one word in length - when it takes up the whole array', async () => { const testBytesOffset = new BigNumber(0); const bytes = await libBytes.publicReadBytes.callAsync(wordOfTestBytes, testBytesOffset); return expect(bytes).to.be.equal(wordOfData); }); it('should successfully read a nested array of bytes - one word in length - when it is offset in the array', async () => { const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef'); const wordOfDataAsBuffer = ethUtil.toBuffer(wordOfData); const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, wordOfTestBytesAsBuffer]); const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer); const testUint256Offset = new BigNumber(prefixByteArrayBuffer.byteLength); const bytes = await libBytes.publicReadBytes.callAsync(combinedByteArray, testUint256Offset); return expect(bytes).to.be.equal(wordOfData); }); it('should successfully read long, nested array of bytes when it takes up the whole array', async () => { const testBytesOffset = new BigNumber(0); const bytes = await libBytes.publicReadBytes.callAsync(longTestBytes, testBytesOffset); return expect(bytes).to.be.equal(longData); }); it('should successfully read long, nested array of bytes when it is offset in the array', async () => { const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef'); const longDataAsBuffer = ethUtil.toBuffer(longData); const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, longTestBytesAsBuffer]); const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer); const testUint256Offset = new BigNumber(prefixByteArrayBuffer.byteLength); const bytes = await libBytes.publicReadBytes.callAsync(combinedByteArray, testUint256Offset); return expect(bytes).to.be.equal(longData); }); it('should fail if the byte array is too short to hold the length of a nested byte array)', async () => { // The length of the nested array is 32 bytes. By storing less than 32 bytes, a length cannot be read. const offset = new BigNumber(0); return expect(libBytes.publicReadBytes.callAsync(byteArrayShorterThan32Bytes, offset)).to.be.rejectedWith( constants.REVERT, ); }); it('should fail if we store a nested byte array length, without a nested byte array)', async () => { const offset = new BigNumber(0); return expect(libBytes.publicReadBytes.callAsync(testBytes32, offset)).to.be.rejectedWith(constants.REVERT); }); it('should fail if the length between the offset and end of the byte array is too short to hold the length of a nested byte array)', async () => { const badOffset = new BigNumber(ethUtil.toBuffer(byteArrayShorterThan32Bytes).byteLength); return expect( libBytes.publicReadBytes.callAsync(byteArrayShorterThan32Bytes, badOffset), ).to.be.rejectedWith(constants.REVERT); }); it('should fail if the length between the offset and end of the byte array is too short to hold the nested byte array)', async () => { const badOffset = new BigNumber(ethUtil.toBuffer(testBytes32).byteLength); return expect(libBytes.publicReadBytes.callAsync(testBytes32, badOffset)).to.be.rejectedWith( constants.REVERT, ); }); }); describe('writeBytes', () => { it('should successfully write short, nested array of bytes when it takes up the whole array)', async () => { const testBytesOffset = new BigNumber(0); const emptyByteArray = ethUtil.bufferToHex(new Buffer(shortTestBytesAsBuffer.byteLength)); const bytesWritten = await libBytes.publicWriteBytes.callAsync(emptyByteArray, testBytesOffset, shortData); const bytesRead = await libBytes.publicReadBytes.callAsync(bytesWritten, testBytesOffset); return expect(bytesRead).to.be.equal(shortData); }); it('should successfully write short, nested array of bytes when it is offset in the array', async () => { // Write a prefix to the array const prefixData = '0xabcdef'; const prefixDataAsBuffer = ethUtil.toBuffer(prefixData); const prefixOffset = new BigNumber(0); const emptyByteArray = ethUtil.bufferToHex( new Buffer(prefixDataAsBuffer.byteLength + shortTestBytesAsBuffer.byteLength), ); let bytesWritten = await libBytes.publicWriteBytes.callAsync(emptyByteArray, prefixOffset, prefixData); // Write data after prefix const testBytesOffset = new BigNumber(prefixDataAsBuffer.byteLength); bytesWritten = await libBytes.publicWriteBytes.callAsync(bytesWritten, testBytesOffset, shortData); // Read data after prefix and validate const bytes = await libBytes.publicReadBytes.callAsync(bytesWritten, testBytesOffset); return expect(bytes).to.be.equal(shortData); }); it('should successfully write a nested array of bytes - one word in length - when it takes up the whole array)', async () => { const testBytesOffset = new BigNumber(0); const emptyByteArray = ethUtil.bufferToHex(new Buffer(wordOfTestBytesAsBuffer.byteLength)); const bytesWritten = await libBytes.publicWriteBytes.callAsync(emptyByteArray, testBytesOffset, wordOfData); const bytesRead = await libBytes.publicReadBytes.callAsync(bytesWritten, testBytesOffset); return expect(bytesRead).to.be.equal(wordOfData); }); it('should successfully write a nested array of bytes - one word in length - when it is offset in the array', async () => { // Write a prefix to the array const prefixData = '0xabcdef'; const prefixDataAsBuffer = ethUtil.toBuffer(prefixData); const prefixOffset = new BigNumber(0); const emptyByteArray = ethUtil.bufferToHex( new Buffer(prefixDataAsBuffer.byteLength + wordOfTestBytesAsBuffer.byteLength), ); let bytesWritten = await libBytes.publicWriteBytes.callAsync(emptyByteArray, prefixOffset, prefixData); // Write data after prefix const testBytesOffset = new BigNumber(prefixDataAsBuffer.byteLength); bytesWritten = await libBytes.publicWriteBytes.callAsync(bytesWritten, testBytesOffset, wordOfData); // Read data after prefix and validate const bytes = await libBytes.publicReadBytes.callAsync(bytesWritten, testBytesOffset); return expect(bytes).to.be.equal(wordOfData); }); it('should successfully write a long, nested bytes when it takes up the whole array)', async () => { const testBytesOffset = new BigNumber(0); const emptyByteArray = ethUtil.bufferToHex(new Buffer(longTestBytesAsBuffer.byteLength)); const bytesWritten = await libBytes.publicWriteBytes.callAsync(emptyByteArray, testBytesOffset, longData); const bytesRead = await libBytes.publicReadBytes.callAsync(bytesWritten, testBytesOffset); return expect(bytesRead).to.be.equal(longData); }); it('should successfully write long, nested array of bytes when it is offset in the array', async () => { // Write a prefix to the array const prefixData = '0xabcdef'; const prefixDataAsBuffer = ethUtil.toBuffer(prefixData); const prefixOffset = new BigNumber(0); const emptyByteArray = ethUtil.bufferToHex( new Buffer(prefixDataAsBuffer.byteLength + longTestBytesAsBuffer.byteLength), ); let bytesWritten = await libBytes.publicWriteBytes.callAsync(emptyByteArray, prefixOffset, prefixData); // Write data after prefix const testBytesOffset = new BigNumber(prefixDataAsBuffer.byteLength); bytesWritten = await libBytes.publicWriteBytes.callAsync(bytesWritten, testBytesOffset, longData); // Read data after prefix and validate const bytes = await libBytes.publicReadBytes.callAsync(bytesWritten, testBytesOffset); return expect(bytes).to.be.equal(longData); }); it('should fail if the byte array is too short to hold the length of a nested byte array)', async () => { const offset = new BigNumber(0); const emptyByteArray = ethUtil.bufferToHex(new Buffer(1)); return expect(libBytes.publicWriteBytes.callAsync(emptyByteArray, offset, longData)).to.be.rejectedWith( constants.REVERT, ); }); it('should fail if the length between the offset and end of the byte array is too short to hold the length of a nested byte array)', async () => { const emptyByteArray = ethUtil.bufferToHex(new Buffer(shortTestBytesAsBuffer.byteLength)); const badOffset = new BigNumber(ethUtil.toBuffer(shortTestBytesAsBuffer).byteLength); return expect(libBytes.publicWriteBytes.callAsync(emptyByteArray, badOffset, shortData)).to.be.rejectedWith( constants.REVERT, ); }); }); });