import { BlockchainLifecycle } from '@0xproject/dev-utils'; import { assetProxyUtils, generatePseudoRandomSalt } from '@0xproject/order-utils'; import { BigNumber } from '@0xproject/utils'; import BN = require('bn.js'); import * as chai from 'chai'; import ethUtil = require('ethereumjs-util'); import * as _ from 'lodash'; import { TestLibBytesContract } from '../../src/generated_contract_wrappers/test_lib_bytes'; import { artifacts } from '../../src/utils/artifacts'; import { expectRevertOrOtherErrorAsync } from '../../src/utils/assertions'; import { chaiSetup } from '../../src/utils/chai_setup'; import { constants } from '../../src/utils/constants'; import { provider, txDefaults, web3Wrapper } from '../../src/utils/web3_wrapper'; chaiSetup.configure(); const expect = chai.expect; const blockchainLifecycle = new BlockchainLifecycle(web3Wrapper); // BUG: Ideally we would use Buffer.from(memory).toString('hex') // https://github.com/Microsoft/TypeScript/issues/23155 const toHex = (buf: Uint8Array): string => buf.reduce((a, v) => a + ('00' + v.toString(16)).slice(-2), '0x'); const fromHex = (str: string): Uint8Array => Uint8Array.from(Buffer.from(str.slice(2), 'hex')); describe('LibBytes', () => { let libBytes: TestLibBytesContract; const byteArrayShorterThan32Bytes = '0x012345'; const byteArrayShorterThan20Bytes = byteArrayShorterThan32Bytes; const byteArrayLongerThan32Bytes = '0x0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef'; const byteArrayLongerThan32BytesFirstBytesSwapped = '0x2301456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef'; const byteArrayLongerThan32BytesLastBytesSwapped = '0x0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef0123456789abefcd'; let testAddress: string; let testAddressB: string; const testBytes32 = '0x102030405060708090a0b0c0d0e0f0102030405060708090a0b0c0d0e0f01020'; const testBytes32B = '0x534877abd8443578526845cdfef020047528759477fedef87346527659aced32'; const testUint256 = new BigNumber(testBytes32, 16); const testUint256B = new BigNumber(testBytes32B, 16); let shortData: string; let shortTestBytes: string; let shortTestBytesAsBuffer: Buffer; let wordOfData: string; let wordOfTestBytes: string; let wordOfTestBytesAsBuffer: Buffer; let longData: string; let longTestBytes: string; let longTestBytesAsBuffer: Buffer; before(async () => { await blockchainLifecycle.startAsync(); }); after(async () => { await blockchainLifecycle.revertAsync(); }); before(async () => { // Setup accounts & addresses const accounts = await web3Wrapper.getAvailableAddressesAsync(); testAddress = accounts[1]; testAddressB = accounts[2]; // Deploy LibBytes libBytes = await TestLibBytesContract.deployFrom0xArtifactAsync(artifacts.TestLibBytes, provider, txDefaults); // Verify lengths of test data const byteArrayShorterThan32BytesLength = ethUtil.toBuffer(byteArrayShorterThan32Bytes).byteLength; expect(byteArrayShorterThan32BytesLength).to.be.lessThan(32); const byteArrayLongerThan32BytesLength = ethUtil.toBuffer(byteArrayLongerThan32Bytes).byteLength; expect(byteArrayLongerThan32BytesLength).to.be.greaterThan(32); const testBytes32Length = ethUtil.toBuffer(testBytes32).byteLength; expect(testBytes32Length).to.be.equal(32); // Create short test bytes shortData = '0xffffaa'; const encodedShortData = ethUtil.toBuffer(shortData); const shortDataLength = new BigNumber(encodedShortData.byteLength); const encodedShortDataLength = assetProxyUtils.encodeUint256(shortDataLength); shortTestBytesAsBuffer = Buffer.concat([encodedShortDataLength, encodedShortData]); shortTestBytes = ethUtil.bufferToHex(shortTestBytesAsBuffer); // Create test bytes one word in length wordOfData = ethUtil.bufferToHex(assetProxyUtils.encodeUint256(generatePseudoRandomSalt())); const encodedWordOfData = ethUtil.toBuffer(wordOfData); const wordOfDataLength = new BigNumber(encodedWordOfData.byteLength); const encodedWordOfDataLength = assetProxyUtils.encodeUint256(wordOfDataLength); wordOfTestBytesAsBuffer = Buffer.concat([encodedWordOfDataLength, encodedWordOfData]); wordOfTestBytes = ethUtil.bufferToHex(wordOfTestBytesAsBuffer); // Create long test bytes (combines short test bytes with word of test bytes) longData = ethUtil.bufferToHex(Buffer.concat([encodedShortData, encodedWordOfData])); const longDataLength = new BigNumber(encodedShortData.byteLength + encodedWordOfData.byteLength); const encodedLongDataLength = assetProxyUtils.encodeUint256(longDataLength); longTestBytesAsBuffer = Buffer.concat([encodedLongDataLength, encodedShortData, encodedWordOfData]); longTestBytes = ethUtil.bufferToHex(longTestBytesAsBuffer); }); beforeEach(async () => { await blockchainLifecycle.startAsync(); }); afterEach(async () => { await blockchainLifecycle.revertAsync(); }); describe('popLastByte', () => { it('should revert if length is 0', async () => { return expectRevertOrOtherErrorAsync( libBytes.publicPopLastByte.callAsync(constants.NULL_BYTES), constants.LIB_BYTES_GREATER_THAN_ZERO_LENGTH_REQUIRED, ); }); it('should pop the last byte from the input and return it', async () => { const [newBytes, poppedByte] = await libBytes.publicPopLastByte.callAsync(byteArrayLongerThan32Bytes); const expectedNewBytes = byteArrayLongerThan32Bytes.slice(0, -2); const expectedPoppedByte = `0x${byteArrayLongerThan32Bytes.slice(-2)}`; expect(newBytes).to.equal(expectedNewBytes); expect(poppedByte).to.equal(expectedPoppedByte); }); }); describe('popLast20Bytes', () => { it('should revert if length is less than 20', async () => { return expectRevertOrOtherErrorAsync( libBytes.publicPopLast20Bytes.callAsync(byteArrayShorterThan20Bytes), constants.LIB_BYTES_GREATER_OR_EQUAL_TO_20_LENGTH_REQUIRED, ); }); it('should pop the last 20 bytes from the input and return it', async () => { const [newBytes, poppedAddress] = await libBytes.publicPopLast20Bytes.callAsync(byteArrayLongerThan32Bytes); const expectedNewBytes = byteArrayLongerThan32Bytes.slice(0, -40); const expectedPoppedAddress = `0x${byteArrayLongerThan32Bytes.slice(-40)}`; expect(newBytes).to.equal(expectedNewBytes); expect(poppedAddress).to.equal(expectedPoppedAddress); }); }); describe('equals', () => { it('should return true if byte arrays are equal (both arrays < 32 bytes)', async () => { const isEqual = await libBytes.publicEquals.callAsync( byteArrayShorterThan32Bytes, byteArrayShorterThan32Bytes, ); return expect(isEqual).to.be.true(); }); it('should return true if byte arrays are equal (both arrays > 32 bytes)', async () => { const isEqual = await libBytes.publicEquals.callAsync( byteArrayLongerThan32Bytes, byteArrayLongerThan32Bytes, ); return expect(isEqual).to.be.true(); }); it('should return false if byte arrays are not equal (first array < 32 bytes, second array > 32 bytes)', async () => { const isEqual = await libBytes.publicEquals.callAsync( byteArrayShorterThan32Bytes, byteArrayLongerThan32Bytes, ); return expect(isEqual).to.be.false(); }); it('should return false if byte arrays are not equal (first array > 32 bytes, second array < 32 bytes)', async () => { const isEqual = await libBytes.publicEquals.callAsync( byteArrayLongerThan32Bytes, byteArrayShorterThan32Bytes, ); return expect(isEqual).to.be.false(); }); it('should return false if byte arrays are not equal (same length, but a byte in first word differs)', async () => { const isEqual = await libBytes.publicEquals.callAsync( byteArrayLongerThan32BytesFirstBytesSwapped, byteArrayLongerThan32Bytes, ); return expect(isEqual).to.be.false(); }); it('should return false if byte arrays are not equal (same length, but a byte in last word differs)', async () => { const isEqual = await libBytes.publicEquals.callAsync( byteArrayLongerThan32BytesLastBytesSwapped, byteArrayLongerThan32Bytes, ); return expect(isEqual).to.be.false(); }); describe('should ignore trailing data', () => { it('should return true when both < 32 bytes', async () => { const isEqual = await libBytes.publicEqualsPop1.callAsync('0x0102', '0x0103'); return expect(isEqual).to.be.true(); }); }); }); describe('deepCopyBytes', () => { it('should revert if dest is shorter than source', async () => { return expectRevertOrOtherErrorAsync( libBytes.publicDeepCopyBytes.callAsync(byteArrayShorterThan32Bytes, byteArrayLongerThan32Bytes), constants.LIB_BYTES_GREATER_OR_EQUAL_TO_SOURCE_BYTES_LENGTH_REQUIRED, ); }); it('should overwrite dest with source if source and dest have equal length', async () => { const zeroedByteArrayLongerThan32Bytes = `0x${_.repeat('0', byteArrayLongerThan32Bytes.length - 2)}`; const zeroedBytesAfterCopy = await libBytes.publicDeepCopyBytes.callAsync( zeroedByteArrayLongerThan32Bytes, byteArrayLongerThan32Bytes, ); return expect(zeroedBytesAfterCopy).to.be.equal(byteArrayLongerThan32Bytes); }); it('should overwrite the leftmost len(source) bytes of dest if dest is larger than source', async () => { const zeroedByteArrayLongerThan32Bytes = `0x${_.repeat('0', byteArrayLongerThan32Bytes.length * 2)}`; const zeroedBytesAfterCopy = await libBytes.publicDeepCopyBytes.callAsync( zeroedByteArrayLongerThan32Bytes, byteArrayLongerThan32Bytes, ); const copiedBytes = zeroedBytesAfterCopy.slice(0, byteArrayLongerThan32Bytes.length); return expect(copiedBytes).to.be.equal(byteArrayLongerThan32Bytes); }); it('should not overwrite the rightmost bytes of dest if dest is larger than source', async () => { const zeroedByteArrayLongerThan32Bytes = `0x${_.repeat('0', byteArrayLongerThan32Bytes.length * 2)}`; const zeroedBytesAfterCopy = await libBytes.publicDeepCopyBytes.callAsync( zeroedByteArrayLongerThan32Bytes, byteArrayLongerThan32Bytes, ); const expectedNotCopiedBytes = zeroedByteArrayLongerThan32Bytes.slice(byteArrayLongerThan32Bytes.length); const notCopiedBytes = zeroedBytesAfterCopy.slice(byteArrayLongerThan32Bytes.length); return expect(notCopiedBytes).to.be.equal(expectedNotCopiedBytes); }); }); describe('readAddress', () => { it('should successfully read address when the address takes up the whole array', async () => { const byteArray = ethUtil.addHexPrefix(testAddress); const testAddressOffset = new BigNumber(0); const address = await libBytes.publicReadAddress.callAsync(byteArray, testAddressOffset); return expect(address).to.be.equal(testAddress); }); it('should successfully read address when it is offset in the array', async () => { const addressByteArrayBuffer = ethUtil.toBuffer(testAddress); const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef'); const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, addressByteArrayBuffer]); const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer); const testAddressOffset = new BigNumber(prefixByteArrayBuffer.byteLength); const address = await libBytes.publicReadAddress.callAsync(combinedByteArray, testAddressOffset); return expect(address).to.be.equal(testAddress); }); it('should fail if the byte array is too short to hold an address', async () => { const shortByteArray = '0xabcdef'; const offset = new BigNumber(0); return expectRevertOrOtherErrorAsync( libBytes.publicReadAddress.callAsync(shortByteArray, offset), constants.LIB_BYTES_GREATER_OR_EQUAL_TO_20_LENGTH_REQUIRED, ); }); it('should fail if the length between the offset and end of the byte array is too short to hold an address', async () => { const byteArray = testAddress; const badOffset = new BigNumber(ethUtil.toBuffer(byteArray).byteLength); return expectRevertOrOtherErrorAsync( libBytes.publicReadAddress.callAsync(byteArray, badOffset), constants.LIB_BYTES_GREATER_OR_EQUAL_TO_20_LENGTH_REQUIRED, ); }); }); describe('writeAddress', () => { it('should successfully write address when the address takes up the whole array', async () => { const byteArray = testAddress; const testAddressOffset = new BigNumber(0); const newByteArray = await libBytes.publicWriteAddress.callAsync( byteArray, testAddressOffset, testAddressB, ); return expect(newByteArray).to.be.equal(testAddressB); }); it('should successfully write address when it is offset in the array', async () => { const addressByteArrayBuffer = ethUtil.toBuffer(testAddress); const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef'); const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, addressByteArrayBuffer]); const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer); const testAddressOffset = new BigNumber(prefixByteArrayBuffer.byteLength); const newByteArray = await libBytes.publicWriteAddress.callAsync( combinedByteArray, testAddressOffset, testAddressB, ); const newByteArrayBuffer = ethUtil.toBuffer(newByteArray); const addressFromOffsetBuffer = newByteArrayBuffer.slice(prefixByteArrayBuffer.byteLength); const addressFromOffset = ethUtil.addHexPrefix(ethUtil.bufferToHex(addressFromOffsetBuffer)); return expect(addressFromOffset).to.be.equal(testAddressB); }); it('should fail if the byte array is too short to hold an address', async () => { const offset = new BigNumber(0); return expectRevertOrOtherErrorAsync( libBytes.publicWriteAddress.callAsync(byteArrayShorterThan20Bytes, offset, testAddress), constants.LIB_BYTES_GREATER_OR_EQUAL_TO_20_LENGTH_REQUIRED, ); }); it('should fail if the length between the offset and end of the byte array is too short to hold an address', async () => { const byteArray = byteArrayLongerThan32Bytes; const badOffset = new BigNumber(ethUtil.toBuffer(byteArray).byteLength); return expectRevertOrOtherErrorAsync( libBytes.publicWriteAddress.callAsync(byteArray, badOffset, testAddress), constants.LIB_BYTES_GREATER_OR_EQUAL_TO_20_LENGTH_REQUIRED, ); }); }); describe('readBytes32', () => { it('should successfully read bytes32 when the bytes32 takes up the whole array', async () => { const testBytes32Offset = new BigNumber(0); const bytes32 = await libBytes.publicReadBytes32.callAsync(testBytes32, testBytes32Offset); return expect(bytes32).to.be.equal(testBytes32); }); it('should successfully read bytes32 when it is offset in the array)', async () => { const bytes32ByteArrayBuffer = ethUtil.toBuffer(testBytes32); const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef'); const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, bytes32ByteArrayBuffer]); const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer); const testBytes32Offset = new BigNumber(prefixByteArrayBuffer.byteLength); const bytes32 = await libBytes.publicReadBytes32.callAsync(combinedByteArray, testBytes32Offset); return expect(bytes32).to.be.equal(testBytes32); }); it('should fail if the byte array is too short to hold a bytes32', async () => { const offset = new BigNumber(0); return expectRevertOrOtherErrorAsync( libBytes.publicReadBytes32.callAsync(byteArrayShorterThan32Bytes, offset), constants.LIB_BYTES_GREATER_OR_EQUAL_TO_32_LENGTH_REQUIRED, ); }); it('should fail if the length between the offset and end of the byte array is too short to hold a bytes32', async () => { const badOffset = new BigNumber(ethUtil.toBuffer(testBytes32).byteLength); return expectRevertOrOtherErrorAsync( libBytes.publicReadBytes32.callAsync(testBytes32, badOffset), constants.LIB_BYTES_GREATER_OR_EQUAL_TO_32_LENGTH_REQUIRED, ); }); }); describe('writeBytes32', () => { it('should successfully write bytes32 when the address takes up the whole array', async () => { const byteArray = testBytes32; const testBytes32Offset = new BigNumber(0); const newByteArray = await libBytes.publicWriteBytes32.callAsync( byteArray, testBytes32Offset, testBytes32B, ); return expect(newByteArray).to.be.equal(testBytes32B); }); it('should successfully write bytes32 when it is offset in the array', async () => { const bytes32ByteArrayBuffer = ethUtil.toBuffer(testBytes32); const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef'); const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, bytes32ByteArrayBuffer]); const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer); const testBytes32Offset = new BigNumber(prefixByteArrayBuffer.byteLength); const newByteArray = await libBytes.publicWriteBytes32.callAsync( combinedByteArray, testBytes32Offset, testBytes32B, ); const newByteArrayBuffer = ethUtil.toBuffer(newByteArray); const bytes32FromOffsetBuffer = newByteArrayBuffer.slice(prefixByteArrayBuffer.byteLength); const bytes32FromOffset = ethUtil.addHexPrefix(ethUtil.bufferToHex(bytes32FromOffsetBuffer)); return expect(bytes32FromOffset).to.be.equal(testBytes32B); }); it('should fail if the byte array is too short to hold a bytes32', async () => { const offset = new BigNumber(0); return expectRevertOrOtherErrorAsync( libBytes.publicWriteBytes32.callAsync(byteArrayShorterThan32Bytes, offset, testBytes32), constants.LIB_BYTES_GREATER_OR_EQUAL_TO_32_LENGTH_REQUIRED, ); }); it('should fail if the length between the offset and end of the byte array is too short to hold a bytes32', async () => { const byteArray = byteArrayLongerThan32Bytes; const badOffset = new BigNumber(ethUtil.toBuffer(byteArray).byteLength); return expectRevertOrOtherErrorAsync( libBytes.publicWriteBytes32.callAsync(byteArray, badOffset, testBytes32), constants.LIB_BYTES_GREATER_OR_EQUAL_TO_32_LENGTH_REQUIRED, ); }); }); describe('readUint256', () => { it('should successfully read uint256 when the uint256 takes up the whole array', async () => { const formattedTestUint256 = new BN(testUint256.toString(10)); const testUint256AsBuffer = ethUtil.toBuffer(formattedTestUint256); const byteArray = ethUtil.bufferToHex(testUint256AsBuffer); const testUint256Offset = new BigNumber(0); const uint256 = await libBytes.publicReadUint256.callAsync(byteArray, testUint256Offset); return expect(uint256).to.bignumber.equal(testUint256); }); it('should successfully read uint256 when it is offset in the array', async () => { const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef'); const formattedTestUint256 = new BN(testUint256.toString(10)); const testUint256AsBuffer = ethUtil.toBuffer(formattedTestUint256); const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, testUint256AsBuffer]); const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer); const testUint256Offset = new BigNumber(prefixByteArrayBuffer.byteLength); const uint256 = await libBytes.publicReadUint256.callAsync(combinedByteArray, testUint256Offset); return expect(uint256).to.bignumber.equal(testUint256); }); it('should fail if the byte array is too short to hold a uint256', async () => { const offset = new BigNumber(0); return expectRevertOrOtherErrorAsync( libBytes.publicReadUint256.callAsync(byteArrayShorterThan32Bytes, offset), constants.LIB_BYTES_GREATER_OR_EQUAL_TO_32_LENGTH_REQUIRED, ); }); it('should fail if the length between the offset and end of the byte array is too short to hold a uint256', async () => { const formattedTestUint256 = new BN(testUint256.toString(10)); const testUint256AsBuffer = ethUtil.toBuffer(formattedTestUint256); const byteArray = ethUtil.bufferToHex(testUint256AsBuffer); const badOffset = new BigNumber(testUint256AsBuffer.byteLength); return expectRevertOrOtherErrorAsync( libBytes.publicReadUint256.callAsync(byteArray, badOffset), constants.LIB_BYTES_GREATER_OR_EQUAL_TO_32_LENGTH_REQUIRED, ); }); }); describe('writeUint256', () => { it('should successfully write uint256 when the address takes up the whole array', async () => { const byteArray = testBytes32; const testUint256Offset = new BigNumber(0); const newByteArray = await libBytes.publicWriteUint256.callAsync( byteArray, testUint256Offset, testUint256B, ); const newByteArrayAsUint256 = new BigNumber(newByteArray, 16); return expect(newByteArrayAsUint256).to.be.bignumber.equal(testUint256B); }); it('should successfully write uint256 when it is offset in the array', async () => { const bytes32ByteArrayBuffer = ethUtil.toBuffer(testBytes32); const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef'); const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, bytes32ByteArrayBuffer]); const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer); const testUint256Offset = new BigNumber(prefixByteArrayBuffer.byteLength); const newByteArray = await libBytes.publicWriteUint256.callAsync( combinedByteArray, testUint256Offset, testUint256B, ); const newByteArrayBuffer = ethUtil.toBuffer(newByteArray); const uint256FromOffsetBuffer = newByteArrayBuffer.slice(prefixByteArrayBuffer.byteLength); const uint256FromOffset = new BigNumber( ethUtil.addHexPrefix(ethUtil.bufferToHex(uint256FromOffsetBuffer)), 16, ); return expect(uint256FromOffset).to.be.bignumber.equal(testUint256B); }); it('should fail if the byte array is too short to hold a uint256', async () => { const offset = new BigNumber(0); return expectRevertOrOtherErrorAsync( libBytes.publicWriteUint256.callAsync(byteArrayShorterThan32Bytes, offset, testUint256), constants.LIB_BYTES_GREATER_OR_EQUAL_TO_32_LENGTH_REQUIRED, ); }); it('should fail if the length between the offset and end of the byte array is too short to hold a uint256', async () => { const byteArray = byteArrayLongerThan32Bytes; const badOffset = new BigNumber(ethUtil.toBuffer(byteArray).byteLength); return expectRevertOrOtherErrorAsync( libBytes.publicWriteUint256.callAsync(byteArray, badOffset, testUint256), constants.LIB_BYTES_GREATER_OR_EQUAL_TO_32_LENGTH_REQUIRED, ); }); }); describe('readBytes4', () => { // AssertionError: expected promise to be rejected with an error including 'revert' but it was fulfilled with '0x08c379a0' it('should revert if byte array has a length < 4', async () => { const byteArrayLessThan4Bytes = '0x010101'; return expectRevertOrOtherErrorAsync( libBytes.publicReadBytes4.callAsync(byteArrayLessThan4Bytes, new BigNumber(0)), constants.LIB_BYTES_GREATER_OR_EQUAL_TO_4_LENGTH_REQUIRED, ); }); it('should return the first 4 bytes of a byte array of arbitrary length', async () => { const first4Bytes = await libBytes.publicReadBytes4.callAsync(byteArrayLongerThan32Bytes, new BigNumber(0)); const expectedFirst4Bytes = byteArrayLongerThan32Bytes.slice(0, 10); expect(first4Bytes).to.equal(expectedFirst4Bytes); }); }); describe('readBytesWithLength', () => { it('should successfully read short, nested array of bytes when it takes up the whole array', async () => { const testBytesOffset = new BigNumber(0); const bytes = await libBytes.publicReadBytesWithLength.callAsync(shortTestBytes, testBytesOffset); return expect(bytes).to.be.equal(shortData); }); it('should successfully read short, nested array of bytes when it is offset in the array', async () => { const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef'); const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, shortTestBytesAsBuffer]); const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer); const testUint256Offset = new BigNumber(prefixByteArrayBuffer.byteLength); const bytes = await libBytes.publicReadBytesWithLength.callAsync(combinedByteArray, testUint256Offset); return expect(bytes).to.be.equal(shortData); }); it('should successfully read a nested array of bytes - one word in length - when it takes up the whole array', async () => { const testBytesOffset = new BigNumber(0); const bytes = await libBytes.publicReadBytesWithLength.callAsync(wordOfTestBytes, testBytesOffset); return expect(bytes).to.be.equal(wordOfData); }); it('should successfully read a nested array of bytes - one word in length - when it is offset in the array', async () => { const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef'); const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, wordOfTestBytesAsBuffer]); const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer); const testUint256Offset = new BigNumber(prefixByteArrayBuffer.byteLength); const bytes = await libBytes.publicReadBytesWithLength.callAsync(combinedByteArray, testUint256Offset); return expect(bytes).to.be.equal(wordOfData); }); it('should successfully read long, nested array of bytes when it takes up the whole array', async () => { const testBytesOffset = new BigNumber(0); const bytes = await libBytes.publicReadBytesWithLength.callAsync(longTestBytes, testBytesOffset); return expect(bytes).to.be.equal(longData); }); it('should successfully read long, nested array of bytes when it is offset in the array', async () => { const prefixByteArrayBuffer = ethUtil.toBuffer('0xabcdef'); const combinedByteArrayBuffer = Buffer.concat([prefixByteArrayBuffer, longTestBytesAsBuffer]); const combinedByteArray = ethUtil.bufferToHex(combinedByteArrayBuffer); const testUint256Offset = new BigNumber(prefixByteArrayBuffer.byteLength); const bytes = await libBytes.publicReadBytesWithLength.callAsync(combinedByteArray, testUint256Offset); return expect(bytes).to.be.equal(longData); }); it('should fail if the byte array is too short to hold the length of a nested byte array', async () => { // The length of the nested array is 32 bytes. By storing less than 32 bytes, a length cannot be read. const offset = new BigNumber(0); return expectRevertOrOtherErrorAsync( libBytes.publicReadBytesWithLength.callAsync(byteArrayShorterThan32Bytes, offset), constants.LIB_BYTES_GREATER_OR_EQUAL_TO_32_LENGTH_REQUIRED, ); }); it('should fail if we store a nested byte array length, without a nested byte array', async () => { const offset = new BigNumber(0); return expectRevertOrOtherErrorAsync( libBytes.publicReadBytesWithLength.callAsync(testBytes32, offset), constants.LIB_BYTES_GREATER_OR_EQUAL_TO_NESTED_BYTES_LENGTH_REQUIRED, ); }); it('should fail if the length between the offset and end of the byte array is too short to hold the length of a nested byte array', async () => { const badOffset = new BigNumber(ethUtil.toBuffer(byteArrayShorterThan32Bytes).byteLength); return expectRevertOrOtherErrorAsync( libBytes.publicReadBytesWithLength.callAsync(byteArrayShorterThan32Bytes, badOffset), constants.LIB_BYTES_GREATER_OR_EQUAL_TO_32_LENGTH_REQUIRED, ); }); it('should fail if the length between the offset and end of the byte array is too short to hold the nested byte array', async () => { const badOffset = new BigNumber(ethUtil.toBuffer(testBytes32).byteLength); return expectRevertOrOtherErrorAsync( libBytes.publicReadBytesWithLength.callAsync(testBytes32, badOffset), constants.LIB_BYTES_GREATER_OR_EQUAL_TO_32_LENGTH_REQUIRED, ); }); }); describe('writeBytesWithLength', () => { it('should successfully write short, nested array of bytes when it takes up the whole array)', async () => { const testBytesOffset = new BigNumber(0); const emptyByteArray = ethUtil.bufferToHex(new Buffer(shortTestBytesAsBuffer.byteLength)); const bytesWritten = await libBytes.publicWriteBytesWithLength.callAsync( emptyByteArray, testBytesOffset, shortData, ); const bytesRead = await libBytes.publicReadBytesWithLength.callAsync(bytesWritten, testBytesOffset); return expect(bytesRead).to.be.equal(shortData); }); it('should successfully write short, nested array of bytes when it is offset in the array', async () => { // Write a prefix to the array const prefixData = '0xabcdef'; const prefixDataAsBuffer = ethUtil.toBuffer(prefixData); const prefixOffset = new BigNumber(0); const emptyByteArray = ethUtil.bufferToHex( new Buffer(prefixDataAsBuffer.byteLength + shortTestBytesAsBuffer.byteLength), ); let bytesWritten = await libBytes.publicWriteBytesWithLength.callAsync( emptyByteArray, prefixOffset, prefixData, ); // Write data after prefix const testBytesOffset = new BigNumber(prefixDataAsBuffer.byteLength); bytesWritten = await libBytes.publicWriteBytesWithLength.callAsync( bytesWritten, testBytesOffset, shortData, ); // Read data after prefix and validate const bytes = await libBytes.publicReadBytesWithLength.callAsync(bytesWritten, testBytesOffset); return expect(bytes).to.be.equal(shortData); }); it('should successfully write a nested array of bytes - one word in length - when it takes up the whole array', async () => { const testBytesOffset = new BigNumber(0); const emptyByteArray = ethUtil.bufferToHex(new Buffer(wordOfTestBytesAsBuffer.byteLength)); const bytesWritten = await libBytes.publicWriteBytesWithLength.callAsync( emptyByteArray, testBytesOffset, wordOfData, ); const bytesRead = await libBytes.publicReadBytesWithLength.callAsync(bytesWritten, testBytesOffset); return expect(bytesRead).to.be.equal(wordOfData); }); it('should successfully write a nested array of bytes - one word in length - when it is offset in the array', async () => { // Write a prefix to the array const prefixData = '0xabcdef'; const prefixDataAsBuffer = ethUtil.toBuffer(prefixData); const prefixOffset = new BigNumber(0); const emptyByteArray = ethUtil.bufferToHex( new Buffer(prefixDataAsBuffer.byteLength + wordOfTestBytesAsBuffer.byteLength), ); let bytesWritten = await libBytes.publicWriteBytesWithLength.callAsync( emptyByteArray, prefixOffset, prefixData, ); // Write data after prefix const testBytesOffset = new BigNumber(prefixDataAsBuffer.byteLength); bytesWritten = await libBytes.publicWriteBytesWithLength.callAsync( bytesWritten, testBytesOffset, wordOfData, ); // Read data after prefix and validate const bytes = await libBytes.publicReadBytesWithLength.callAsync(bytesWritten, testBytesOffset); return expect(bytes).to.be.equal(wordOfData); }); it('should successfully write a long, nested bytes when it takes up the whole array', async () => { const testBytesOffset = new BigNumber(0); const emptyByteArray = ethUtil.bufferToHex(new Buffer(longTestBytesAsBuffer.byteLength)); const bytesWritten = await libBytes.publicWriteBytesWithLength.callAsync( emptyByteArray, testBytesOffset, longData, ); const bytesRead = await libBytes.publicReadBytesWithLength.callAsync(bytesWritten, testBytesOffset); return expect(bytesRead).to.be.equal(longData); }); it('should successfully write long, nested array of bytes when it is offset in the array', async () => { // Write a prefix to the array const prefixData = '0xabcdef'; const prefixDataAsBuffer = ethUtil.toBuffer(prefixData); const prefixOffset = new BigNumber(0); const emptyByteArray = ethUtil.bufferToHex( new Buffer(prefixDataAsBuffer.byteLength + longTestBytesAsBuffer.byteLength), ); let bytesWritten = await libBytes.publicWriteBytesWithLength.callAsync( emptyByteArray, prefixOffset, prefixData, ); // Write data after prefix const testBytesOffset = new BigNumber(prefixDataAsBuffer.byteLength); bytesWritten = await libBytes.publicWriteBytesWithLength.callAsync(bytesWritten, testBytesOffset, longData); // Read data after prefix and validate const bytes = await libBytes.publicReadBytesWithLength.callAsync(bytesWritten, testBytesOffset); return expect(bytes).to.be.equal(longData); }); it('should fail if the byte array is too short to hold the length of a nested byte array', async () => { const offset = new BigNumber(0); const emptyByteArray = ethUtil.bufferToHex(new Buffer(1)); return expectRevertOrOtherErrorAsync( libBytes.publicWriteBytesWithLength.callAsync(emptyByteArray, offset, longData), constants.LIB_BYTES_GREATER_OR_EQUAL_TO_NESTED_BYTES_LENGTH_REQUIRED, ); }); it('should fail if the length between the offset and end of the byte array is too short to hold the length of a nested byte array)', async () => { const emptyByteArray = ethUtil.bufferToHex(new Buffer(shortTestBytesAsBuffer.byteLength)); const badOffset = new BigNumber(ethUtil.toBuffer(shortTestBytesAsBuffer).byteLength); return expectRevertOrOtherErrorAsync( libBytes.publicWriteBytesWithLength.callAsync(emptyByteArray, badOffset, shortData), constants.LIB_BYTES_GREATER_OR_EQUAL_TO_NESTED_BYTES_LENGTH_REQUIRED, ); }); }); describe('memCopy', () => { // Create memory 0x000102...FF const memSize = 256; // tslint:disable:no-shadowed-variable const memory = new Uint8Array(memSize).map((_, i) => i); const memHex = toHex(memory); // Reference implementation to test against const refMemcpy = (mem: Uint8Array, dest: number, source: number, length: number): Uint8Array => Uint8Array.from(mem).copyWithin(dest, source, source + length); // Test vectors: destination, source, length, job description type Tests = Array<[number, number, number, string]>; const test = (tests: Tests) => tests.forEach(([dest, source, length, job]) => it(job, async () => { const expected = refMemcpy(memory, dest, source, length); const resultStr = await libBytes.testMemcpy.callAsync( memHex, new BigNumber(dest), new BigNumber(source), new BigNumber(length), ); const result = fromHex(resultStr); expect(result).to.deep.equal(expected); }), ); test([[0, 0, 0, 'copies zero bytes with overlap']]); describe('copies forward', () => test([ [128, 0, 0, 'zero bytes'], [128, 0, 1, 'one byte'], [128, 0, 11, 'eleven bytes'], [128, 0, 31, 'thirty-one bytes'], [128, 0, 32, 'one word'], [128, 0, 64, 'two words'], [128, 0, 96, 'three words'], [128, 0, 33, 'one word and one byte'], [128, 0, 72, 'two words and eight bytes'], [128, 0, 100, 'three words and four bytes'], ])); describe('copies forward within one word', () => test([ [16, 0, 0, 'zero bytes'], [16, 0, 1, 'one byte'], [16, 0, 11, 'eleven bytes'], [16, 0, 16, 'sixteen bytes'], ])); describe('copies forward with one byte overlap', () => test([ [0, 0, 1, 'one byte'], [10, 0, 11, 'eleven bytes'], [30, 0, 31, 'thirty-one bytes'], [31, 0, 32, 'one word'], [32, 0, 33, 'one word and one byte'], [71, 0, 72, 'two words and eight bytes'], [99, 0, 100, 'three words and four bytes'], ])); describe('copies forward with thirty-one bytes overlap', () => test([ [0, 0, 31, 'thirty-one bytes'], [1, 0, 32, 'one word'], [2, 0, 33, 'one word and one byte'], [41, 0, 72, 'two words and eight bytes'], [69, 0, 100, 'three words and four bytes'], ])); describe('copies forward with one word overlap', () => test([ [0, 0, 32, 'one word'], [1, 0, 33, 'one word and one byte'], [41, 0, 72, 'two words and eight bytes'], [69, 0, 100, 'three words and four bytes'], ])); describe('copies forward with one word and one byte overlap', () => test([ [0, 0, 33, 'one word and one byte'], [40, 0, 72, 'two words and eight bytes'], [68, 0, 100, 'three words and four bytes'], ])); describe('copies forward with two words overlap', () => test([ [0, 0, 64, 'two words'], [8, 0, 72, 'two words and eight bytes'], [36, 0, 100, 'three words and four bytes'], ])); describe('copies forward within one word and one byte overlap', () => test([[0, 0, 1, 'one byte'], [10, 0, 11, 'eleven bytes'], [15, 0, 16, 'sixteen bytes']])); describe('copies backward', () => test([ [0, 128, 0, 'zero bytes'], [0, 128, 1, 'one byte'], [0, 128, 11, 'eleven bytes'], [0, 128, 31, 'thirty-one bytes'], [0, 128, 32, 'one word'], [0, 128, 64, 'two words'], [0, 128, 96, 'three words'], [0, 128, 33, 'one word and one byte'], [0, 128, 72, 'two words and eight bytes'], [0, 128, 100, 'three words and four bytes'], ])); describe('copies backward within one word', () => test([ [0, 16, 0, 'zero bytes'], [0, 16, 1, 'one byte'], [0, 16, 11, 'eleven bytes'], [0, 16, 16, 'sixteen bytes'], ])); describe('copies backward with one byte overlap', () => test([ [0, 0, 1, 'one byte'], [0, 10, 11, 'eleven bytes'], [0, 30, 31, 'thirty-one bytes'], [0, 31, 32, 'one word'], [0, 32, 33, 'one word and one byte'], [0, 71, 72, 'two words and eight bytes'], [0, 99, 100, 'three words and four bytes'], ])); describe('copies backward with thirty-one bytes overlap', () => test([ [0, 0, 31, 'thirty-one bytes'], [0, 1, 32, 'one word'], [0, 2, 33, 'one word and one byte'], [0, 41, 72, 'two words and eight bytes'], [0, 69, 100, 'three words and four bytes'], ])); describe('copies backward with one word overlap', () => test([ [0, 0, 32, 'one word'], [0, 1, 33, 'one word and one byte'], [0, 41, 72, 'two words and eight bytes'], [0, 69, 100, 'three words and four bytes'], ])); describe('copies backward with one word and one byte overlap', () => test([ [0, 0, 33, 'one word and one byte'], [0, 40, 72, 'two words and eight bytes'], [0, 68, 100, 'three words and four bytes'], ])); describe('copies backward with two words overlap', () => test([ [0, 0, 64, 'two words'], [0, 8, 72, 'two words and eight bytes'], [0, 36, 100, 'three words and four bytes'], ])); describe('copies forward within one word and one byte overlap', () => test([[0, 0, 1, 'one byte'], [0, 10, 11, 'eleven bytes'], [0, 15, 16, 'sixteen bytes']])); }); }); // tslint:disable:max-file-line-count