aboutsummaryrefslogtreecommitdiffstats
path: root/packages/instant/test
diff options
context:
space:
mode:
Diffstat (limited to 'packages/instant/test')
-rw-r--r--packages/instant/test/util/dependencies/prevbignumber.d.ts1772
-rw-r--r--packages/instant/test/util/dependencies/prevbignumber.js2705
-rw-r--r--packages/instant/test/util/maybe_big_number.test.ts56
-rw-r--r--packages/instant/test/util/order_coercion.test.ts103
4 files changed, 128 insertions, 4508 deletions
diff --git a/packages/instant/test/util/dependencies/prevbignumber.d.ts b/packages/instant/test/util/dependencies/prevbignumber.d.ts
deleted file mode 100644
index 9b802ec3e..000000000
--- a/packages/instant/test/util/dependencies/prevbignumber.d.ts
+++ /dev/null
@@ -1,1772 +0,0 @@
-// Type definitions for bignumber.js >=6.0.0
-// Project: https://github.com/MikeMcl/bignumber.js
-// Definitions by: Michael Mclaughlin <https://github.com/MikeMcl>
-// Definitions: https://github.com/MikeMcl/bignumber.js
-
-// Documentation: http://mikemcl.github.io/bignumber.js/
-//
-// Exports (available globally or when using import):
-//
-// class BigNumber (default export)
-// type BigNumber.Constructor
-// type BigNumber.Instance
-// type BigNumber.ModuloMode
-// type BigNumber.RoundingMOde
-// type BigNumber.Value
-// interface BigNumber.Config
-// interface BigNumber.Format
-//
-// Example (alternative syntax commented-out):
-//
-// import {BigNumber} from "bignumber.js"
-// //import BigNumber from "bignumber.js"
-//
-// let rm: BigNumber.RoundingMode = BigNumber.ROUND_UP;
-// let f: BigNumber.Format = { decimalSeparator: ',' };
-// let c: BigNumber.Config = { DECIMAL_PLACES: 4, ROUNDING_MODE: rm, FORMAT: f };
-// BigNumber.config(c);
-//
-// let v: BigNumber.Value = '12345.6789';
-// let b: BigNumber = new BigNumber(v);
-// //let b: BigNumber.Instance = new BigNumber(v);
-//
-// The use of compiler option `--strictNullChecks` is recommended.
-
-
-type BigNumberConstructor = typeof BigNumber;
-type BigNumberInstance = BigNumber;
-type BigNumberModuloMode = BigNumberRoundingMode | 9;
-type BigNumberRoundingMode = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8;
-type BigNumberValue = string | number | BigNumber;
-
-/**
- * See `BigNumber.config` and `BigNumber.clone`.
- */
-interface BigNumberConfig {
-
- /**
- * An integer, 0 to 1e+9. Default value: 20.
- *
- * The maximum number of decimal places of the result of operations involving division, i.e.
- * division, square root and base conversion operations, and exponentiation when the exponent is
- * negative.
- *
- * ```ts
- * BigNumber.config({ DECIMAL_PLACES: 5 })
- * BigNumber.set({ DECIMAL_PLACES: 5 })
- * ```
- */
- DECIMAL_PLACES?: number;
-
- /**
- * An integer, 0 to 8. Default value: `BigNumber.ROUND_HALF_UP` (4).
- *
- * The rounding mode used in operations that involve division (see `DECIMAL_PLACES`) and the
- * default rounding mode of the `decimalPlaces`, `precision`, `toExponential`, `toFixed`,
- * `toFormat` and `toPrecision` methods.
- *
- * The modes are available as enumerated properties of the BigNumber constructor.
- *
- * ```ts
- * BigNumber.config({ ROUNDING_MODE: 0 })
- * BigNumber.set({ ROUNDING_MODE: BigNumber.ROUND_UP })
- * ```
- */
- ROUNDING_MODE?: BigNumberRoundingMode;
-
- /**
- * An integer, 0 to 1e+9, or an array, [-1e+9 to 0, 0 to 1e+9].
- * Default value: `[-7, 20]`.
- *
- * The exponent value(s) at which `toString` returns exponential notation.
- *
- * If a single number is assigned, the value is the exponent magnitude.
- *
- * If an array of two numbers is assigned then the first number is the negative exponent value at
- * and beneath which exponential notation is used, and the second number is the positive exponent
- * value at and above which exponential notation is used.
- *
- * For example, to emulate JavaScript numbers in terms of the exponent values at which they begin
- * to use exponential notation, use `[-7, 20]`.
- *
- * ```ts
- * BigNumber.config({ EXPONENTIAL_AT: 2 })
- * new BigNumber(12.3) // '12.3' e is only 1
- * new BigNumber(123) // '1.23e+2'
- * new BigNumber(0.123) // '0.123' e is only -1
- * new BigNumber(0.0123) // '1.23e-2'
- *
- * BigNumber.config({ EXPONENTIAL_AT: [-7, 20] })
- * new BigNumber(123456789) // '123456789' e is only 8
- * new BigNumber(0.000000123) // '1.23e-7'
- *
- * // Almost never return exponential notation:
- * BigNumber.config({ EXPONENTIAL_AT: 1e+9 })
- *
- * // Always return exponential notation:
- * BigNumber.config({ EXPONENTIAL_AT: 0 })
- * ```
- *
- * Regardless of the value of `EXPONENTIAL_AT`, the `toFixed` method will always return a value in
- * normal notation and the `toExponential` method will always return a value in exponential form.
- * Calling `toString` with a base argument, e.g. `toString(10)`, will also always return normal
- * notation.
- */
- EXPONENTIAL_AT?: number|[number, number];
-
- /**
- * An integer, magnitude 1 to 1e+9, or an array, [-1e+9 to -1, 1 to 1e+9].
- * Default value: `[-1e+9, 1e+9]`.
- *
- * The exponent value(s) beyond which overflow to Infinity and underflow to zero occurs.
- *
- * If a single number is assigned, it is the maximum exponent magnitude: values wth a positive
- * exponent of greater magnitude become Infinity and those with a negative exponent of greater
- * magnitude become zero.
- *
- * If an array of two numbers is assigned then the first number is the negative exponent limit and
- * the second number is the positive exponent limit.
- *
- * For example, to emulate JavaScript numbers in terms of the exponent values at which they
- * become zero and Infinity, use [-324, 308].
- *
- * ```ts
- * BigNumber.config({ RANGE: 500 })
- * BigNumber.config().RANGE // [ -500, 500 ]
- * new BigNumber('9.999e499') // '9.999e+499'
- * new BigNumber('1e500') // 'Infinity'
- * new BigNumber('1e-499') // '1e-499'
- * new BigNumber('1e-500') // '0'
- *
- * BigNumber.config({ RANGE: [-3, 4] })
- * new BigNumber(99999) // '99999' e is only 4
- * new BigNumber(100000) // 'Infinity' e is 5
- * new BigNumber(0.001) // '0.01' e is only -3
- * new BigNumber(0.0001) // '0' e is -4
- * ```
- * The largest possible magnitude of a finite BigNumber is 9.999...e+1000000000.
- * The smallest possible magnitude of a non-zero BigNumber is 1e-1000000000.
- */
- RANGE?: number|[number, number];
-
- /**
- * A boolean: `true` or `false`. Default value: `false`.
- *
- * The value that determines whether cryptographically-secure pseudo-random number generation is
- * used. If `CRYPTO` is set to true then the random method will generate random digits using
- * `crypto.getRandomValues` in browsers that support it, or `crypto.randomBytes` if using a
- * version of Node.js that supports it.
- *
- * If neither function is supported by the host environment then attempting to set `CRYPTO` to
- * `true` will fail and an exception will be thrown.
- *
- * If `CRYPTO` is `false` then the source of randomness used will be `Math.random` (which is
- * assumed to generate at least 30 bits of randomness).
- *
- * See `BigNumber.random`.
- *
- * ```ts
- * BigNumber.config({ CRYPTO: true })
- * BigNumber.config().CRYPTO // true
- * BigNumber.random() // 0.54340758610486147524
- * ```
- */
- CRYPTO?: boolean;
-
- /**
- * An integer, 0 to 9. Default value: `BigNumber.ROUND_DOWN` (1).
- *
- * The modulo mode used when calculating the modulus: `a mod n`.
- * The quotient, `q = a / n`, is calculated according to the `ROUNDING_MODE` that corresponds to
- * the chosen `MODULO_MODE`.
- * The remainder, `r`, is calculated as: `r = a - n * q`.
- *
- * The modes that are most commonly used for the modulus/remainder operation are shown in the
- * following table. Although the other rounding modes can be used, they may not give useful
- * results.
- *
- * Property | Value | Description
- * :------------------|:------|:------------------------------------------------------------------
- * `ROUND_UP` | 0 | The remainder is positive if the dividend is negative.
- * `ROUND_DOWN` | 1 | The remainder has the same sign as the dividend.
- * | | Uses 'truncating division' and matches JavaScript's `%` operator .
- * `ROUND_FLOOR` | 3 | The remainder has the same sign as the divisor.
- * | | This matches Python's `%` operator.
- * `ROUND_HALF_EVEN` | 6 | The IEEE 754 remainder function.
- * `EUCLID` | 9 | The remainder is always positive.
- * | | Euclidian division: `q = sign(n) * floor(a / abs(n))`
- *
- * The rounding/modulo modes are available as enumerated properties of the BigNumber constructor.
- *
- * See `modulo`.
- *
- * ```ts
- * BigNumber.config({ MODULO_MODE: BigNumber.EUCLID })
- * BigNumber.set({ MODULO_MODE: 9 }) // equivalent
- * ```
- */
- MODULO_MODE?: BigNumberModuloMode;
-
- /**
- * An integer, 0 to 1e+9. Default value: 0.
- *
- * The maximum precision, i.e. number of significant digits, of the result of the power operation
- * - unless a modulus is specified.
- *
- * If set to 0, the number of significant digits will not be limited.
- *
- * See `exponentiatedBy`.
- *
- * ```ts
- * BigNumber.config({ POW_PRECISION: 100 })
- * ```
- */
- POW_PRECISION?: number;
-
- /**
- * An object including any number of the properties shown below.
- *
- * The object configures the format of the string returned by the `toFormat` method.
- * The example below shows the properties of the object that are recognised, and
- * their default values.
- *
- * Unlike the other configuration properties, the values of the properties of the `FORMAT` object
- * will not be checked for validity - the existing object will simply be replaced by the object
- * that is passed in.
- *
- * See `toFormat`.
- *
- * ```ts
- * BigNumber.config({
- * FORMAT: {
- * // the decimal separator
- * decimalSeparator: '.',
- * // the grouping separator of the integer part
- * groupSeparator: ',',
- * // the primary grouping size of the integer part
- * groupSize: 3,
- * // the secondary grouping size of the integer part
- * secondaryGroupSize: 0,
- * // the grouping separator of the fraction part
- * fractionGroupSeparator: ' ',
- * // the grouping size of the fraction part
- * fractionGroupSize: 0
- * }
- * })
- * ```
- */
- FORMAT?: BigNumberFormat;
-
- /**
- * A string representing the alphabet used for base conversion.
- * Default value: `'0123456789abcdefghijklmnopqrstuvwxyz'`.
- *
- * The length of the alphabet corresponds to the maximum value of the base argument that can be
- * passed to the BigNumber constructor or `toString`. There is no maximum length, but it must be
- * at least 2 characters long, and it must not contain a repeated character, or `'.'` - the
- * decimal separator for all values whatever their base.
- *
- * ```ts
- * // duodecimal (base 12)
- * BigNumber.config({ ALPHABET: '0123456789TE' })
- * x = new BigNumber('T', 12)
- * x.toString() // '10'
- * x.toString(12) // 'T'
- * ```
- */
- ALPHABET?: string;
-}
-
-
-/**
- * See `FORMAT` and `toFormat`.
- */
-interface BigNumberFormat {
-
- /**
- * The decimal separator.
- */
- decimalSeparator?: string;
-
- /**
- * The grouping separator of the integer part.
- */
- groupSeparator?: string;
-
- /**
- * The primary grouping size of the integer part.
- */
- groupSize?: number;
-
- /**
- * The secondary grouping size of the integer part.
- */
- secondaryGroupSize?: number;
-
- /**
- * The grouping separator of the fraction part.
- */
- fractionGroupSeparator?: string;
-
- /**
- * The grouping size of the fraction part.
- */
- fractionGroupSize?: number;
-}
-
-
-export declare class BigNumber {
-
- /**
- * Used internally by the `BigNumber.isBigNumber` method.
- */
- private readonly _isBigNumber: true;
-
- /**
- * The coefficient of the value of this BigNumber, an array of base 1e14 integer numbers.
- */
- readonly c: number[];
-
- /**
- * The exponent of the value of this BigNumber, an integer number, -1000000000 to 1000000000.
- */
- readonly e: number;
-
- /**
- * The sign of the value of this BigNumber, -1 or 1.
- */
- readonly s: number;
-
- /**
- * Returns a new instance of BigNumber with value `n`.
- *
- * Legitimate values for `n` include ±0, ±`Infinity` and `NaN`.
- *
- * Values of type number with more than 15 significant digits are considered invalid as calling
- * `toString` or `valueOf` on such numbers may not result in the intended value.
- *
- * ```ts
- * console.log( 823456789123456.3 ); // 823456789123456.2
- * ```
- *
- * There is no limit to the number of digits of a value of type string (other than that of
- * JavaScript's maximum array size). Decimal string values may be in exponential, as well as
- * normal (fixed-point) notation. Non-decimal values must be in normal notation.
- *
- * String values in hexadecimal literal form, e.g. '0xff', are valid, as are string values with
- * the octal and binary prefixs '0o' and '0b'. String values in octal literal form without the
- * prefix will be interpreted as decimals, e.g. '011' is interpreted as 11, not 9.
- *
- * Values in any base may have fraction digits.
- *
- * If a base is specified, `n` is rounded according to the current `DECIMAL_PLACES` and
- * `ROUNDING_MODE` settings. If base is omitted, or is `null` or `undefined`, base 10 is assumed.
- *
- * Throws an invalid `value` or `base`.
- *
- * ```ts
- * x = new BigNumber(9) // '9'
- * y = new BigNumber(x) // '9'
- *
- * // 'new' is optional
- * BigNumber(435.345) // '435.345'
- *
- * new BigNumber('5032485723458348569331745.33434346346912144534543')
- * new BigNumber('4.321e+4') // '43210'
- * new BigNumber('-735.0918e-430') // '-7.350918e-428'
- * new BigNumber(Infinity) // 'Infinity'
- * new BigNumber(NaN) // 'NaN'
- * new BigNumber('.5') // '0.5'
- * new BigNumber('+2') // '2'
- * new BigNumber(-10110100.1, 2) // '-180.5'
- * new BigNumber(-0b10110100.1) // '-180.5'
- * new BigNumber('123412421.234324', 5) // '607236.557696'
- * new BigNumber('ff.8', 16) // '255.5'
- * new BigNumber('0xff.8') // '255.5'
- *
- * // The following throws 'Not a base 2 number'.
- * new BigNumber(9, 2)
- *
- * // The following throws 'Number primitive has more than 15 significant digits'.
- * new BigNumber(96517860459076817.4395)
- *
- * // The following throws 'Not a number'.
- * new BigNumber('blurgh')
- *
- * // A value is only rounded by the constructor if a base is specified.
- * BigNumber.config({ DECIMAL_PLACES: 5 })
- * new BigNumber(1.23456789) // '1.23456789'
- * new BigNumber(1.23456789, 10) // '1.23457'
- * ```
- *
- * @param n A numeric value.
- * @param base The base of n, integer, 2 to 36 (or `ALPHABET.length`, see `ALPHABET`).
- */
- constructor(n: BigNumberValue, base?: number);
-
- /**
- * Returns a BigNumber whose value is the absolute value, i.e. the magnitude, of the value of this
- * BigNumber.
- *
- * The return value is always exact and unrounded.
- *
- * ```ts
- * x = new BigNumber(-0.8)
- * x.absoluteValue() // '0.8'
- * ```
- */
- absoluteValue(): BigNumber;
-
- /**
- * Returns a BigNumber whose value is the absolute value, i.e. the magnitude, of the value of this
- * BigNumber.
- *
- * The return value is always exact and unrounded.
- *
- * ```ts
- * x = new BigNumber(-0.8)
- * x.abs() // '0.8'
- * ```
- */
- abs(): BigNumber;
-
- /**
- * Returns | |
- * :-------:|:--------------------------------------------------------------|
- * 1 | If the value of this BigNumber is greater than the value of `n`
- * -1 | If the value of this BigNumber is less than the value of `n`
- * 0 | If this BigNumber and `n` have the same value
- * `null` | If the value of either this BigNumber or `n` is `NaN`
- *
- * ```ts
- *
- * x = new BigNumber(Infinity)
- * y = new BigNumber(5)
- * x.comparedTo(y) // 1
- * x.comparedTo(x.minus(1)) // 0
- * y.comparedTo(NaN) // null
- * y.comparedTo('110', 2) // -1
- * ```
- * @param n A numeric value.
- * @param [base] The base of n.
- */
- comparedTo(n: BigNumberValue, base?: number): number;
-
- /**
- * Returns a BigNumber whose value is the value of this BigNumber rounded by rounding mode
- * `roundingMode` to a maximum of `decimalPlaces` decimal places.
- *
- * If `decimalPlaces` is omitted, or is `null` or `undefined`, the return value is the number of
- * decimal places of the value of this BigNumber, or `null` if the value of this BigNumber is
- * ±`Infinity` or `NaN`.
- *
- * If `roundingMode` is omitted, or is `null` or `undefined`, `ROUNDING_MODE` is used.
- *
- * Throws if `decimalPlaces` or `roundingMode` is invalid.
- *
- * ```ts
- * x = new BigNumber(1234.56)
- * x.decimalPlaces() // 2
- * x.decimalPlaces(1) // '1234.6'
- * x.decimalPlaces(2) // '1234.56'
- * x.decimalPlaces(10) // '1234.56'
- * x.decimalPlaces(0, 1) // '1234'
- * x.decimalPlaces(0, 6) // '1235'
- * x.decimalPlaces(1, 1) // '1234.5'
- * x.decimalPlaces(1, BigNumber.ROUND_HALF_EVEN) // '1234.6'
- * x // '1234.56'
- * y = new BigNumber('9.9e-101')
- * y.decimalPlaces() // 102
- * ```
- *
- * @param [decimalPlaces] Decimal places, integer, 0 to 1e+9.
- * @param [roundingMode] Rounding mode, integer, 0 to 8.
- */
- decimalPlaces(decimalPlaces?: number, roundingMode?: BigNumberRoundingMode): BigNumber;
-
- /**
- * Returns a BigNumber whose value is the value of this BigNumber rounded by rounding mode
- * `roundingMode` to a maximum of `decimalPlaces` decimal places.
- *
- * If `decimalPlaces` is omitted, or is `null` or `undefined`, the return value is the number of
- * decimal places of the value of this BigNumber, or `null` if the value of this BigNumber is
- * ±`Infinity` or `NaN`.
- *
- * If `roundingMode` is omitted, or is `null` or `undefined`, `ROUNDING_MODE` is used.
- *
- * Throws if `decimalPlaces` or `roundingMode` is invalid.
- *
- * ```ts
- * x = new BigNumber(1234.56)
- * x.dp() // 2
- * x.dp(1) // '1234.6'
- * x.dp(2) // '1234.56'
- * x.dp(10) // '1234.56'
- * x.dp(0, 1) // '1234'
- * x.dp(0, 6) // '1235'
- * x.dp(1, 1) // '1234.5'
- * x.dp(1, BigNumber.ROUND_HALF_EVEN) // '1234.6'
- * x // '1234.56'
- * y = new BigNumber('9.9e-101')
- * y.dp() // 102
- * ```
- *
- * @param [decimalPlaces] Decimal places, integer, 0 to 1e+9.
- * @param [roundingMode] Rounding mode, integer, 0 to 8.
- */
- dp(decimalPlaces?: number, roundingMode?: BigNumberRoundingMode): BigNumber;
-
- /**
- * Returns a BigNumber whose value is the value of this BigNumber divided by `n`, rounded
- * according to the current `DECIMAL_PLACES` and `ROUNDING_MODE` settings.
- *
- * ```ts
- * x = new BigNumber(355)
- * y = new BigNumber(113)
- * x.dividedBy(y) // '3.14159292035398230088'
- * x.dividedBy(5) // '71'
- * x.dividedBy(47, 16) // '5'
- * ```
- *
- * @param n A numeric value.
- * @param [base] The base of n.
- */
- dividedBy(n: BigNumberValue, base?: number): BigNumber;
-
- /**
- * Returns a BigNumber whose value is the value of this BigNumber divided by `n`, rounded
- * according to the current `DECIMAL_PLACES` and `ROUNDING_MODE` settings.
- *
- * ```ts
- * x = new BigNumber(355)
- * y = new BigNumber(113)
- * x.div(y) // '3.14159292035398230088'
- * x.div(5) // '71'
- * x.div(47, 16) // '5'
- * ```
- *
- * @param n A numeric value.
- * @param [base] The base of n.
- */
- div(n: BigNumberValue, base?: number): BigNumber;
-
- /**
- * Returns a BigNumber whose value is the integer part of dividing the value of this BigNumber by
- * `n`.
- *
- * ```ts
- * x = new BigNumber(5)
- * y = new BigNumber(3)
- * x.dividedToIntegerBy(y) // '1'
- * x.dividedToIntegerBy(0.7) // '7'
- * x.dividedToIntegerBy('0.f', 16) // '5'
- * ```
- *
- * @param n A numeric value.
- * @param [base] The base of n.
- */
- dividedToIntegerBy(n: BigNumberValue, base?: number): BigNumber;
-
- /**
- * Returns a BigNumber whose value is the integer part of dividing the value of this BigNumber by
- * `n`.
- *
- * ```ts
- * x = new BigNumber(5)
- * y = new BigNumber(3)
- * x.idiv(y) // '1'
- * x.idiv(0.7) // '7'
- * x.idiv('0.f', 16) // '5'
- * ```
- *
- * @param n A numeric value.
- * @param [base] The base of n.
- */
- idiv(n: BigNumberValue, base?: number): BigNumber;
-
- /**
- * Returns a BigNumber whose value is the value of this BigNumber exponentiated by `n`, i.e.
- * raised to the power `n`, and optionally modulo a modulus `m`.
- *
- * If `n` is negative the result is rounded according to the current `DECIMAL_PLACES` and
- * `ROUNDING_MODE` settings.
- *
- * As the number of digits of the result of the power operation can grow so large so quickly,
- * e.g. 123.456**10000 has over 50000 digits, the number of significant digits calculated is
- * limited to the value of the `POW_PRECISION` setting (unless a modulus `m` is specified).
- *
- * By default `POW_PRECISION` is set to 0. This means that an unlimited number of significant
- * digits will be calculated, and that the method's performance will decrease dramatically for
- * larger exponents.
- *
- * If `m` is specified and the value of `m`, `n` and this BigNumber are positive integers, then a
- * fast modular exponentiation algorithm is used, otherwise if any of the values is not a positive
- * integer the operation will simply be performed as `x.exponentiatedBy(n).modulo(m)` with a
- * `POW_PRECISION` of 0.
- *
- * Throws if `n` is not a primitive number, or is not an integer, or is out of range.
- *
- * ```ts
- * Math.pow(0.7, 2) // 0.48999999999999994
- * x = new BigNumber(0.7)
- * x.exponentiatedBy(2) // '0.49'
- * BigNumber(3).exponentiatedBy(-2) // '0.11111111111111111111'
- * ```
- *
- * @param n The exponent, an integer, -9007199254740991 to 9007199254740991.
- * @param [m] The modulus, a positive integer.
- */
- exponentiatedBy(n: number, m?: BigNumberValue): BigNumber;
-
- /**
- * Returns a BigNumber whose value is the value of this BigNumber exponentiated by `n`, i.e.
- * raised to the power `n`, and optionally modulo a modulus `m`.
- *
- * If `n` is negative the result is rounded according to the current `DECIMAL_PLACES` and
- * `ROUNDING_MODE` settings.
- *
- * As the number of digits of the result of the power operation can grow so large so quickly,
- * e.g. 123.456**10000 has over 50000 digits, the number of significant digits calculated is
- * limited to the value of the `POW_PRECISION` setting (unless a modulus `m` is specified).
- *
- * By default `POW_PRECISION` is set to 0. This means that an unlimited number of significant
- * digits will be calculated, and that the method's performance will decrease dramatically for
- * larger exponents.
- *
- * If `m` is specified and the value of `m`, `n` and this BigNumber are positive integers, then a
- * fast modular exponentiation algorithm is used, otherwise if any of the values is not a positive
- * integer the operation will simply be performed as `x.exponentiatedBy(n).modulo(m)` with a
- * `POW_PRECISION` of 0.
- *
- * Throws if `n` is not a primitive number or an integer, or is out of range.
- *
- * ```ts
- * Math.pow(0.7, 2) // 0.48999999999999994
- * x = new BigNumber(0.7)
- * x.pow(2) // '0.49'
- * BigNumber(3).pow(-2) // '0.11111111111111111111'
- * ```
- *
- * @param n The exponent, an integer, -9007199254740991 to 9007199254740991.
- * @param [m] The modulus, a positive integer.
- */
- pow(n: number, m?: BigNumberValue): BigNumber;
-
- /**
- * Returns a BigNumber whose value is the value of this BigNumber rounded to an integer using
- * rounding mode `rm`.
- *
- * If `rm` is omitted, or is `null` or `undefined`, `ROUNDING_MODE` is used.
- *
- * Throws if `rm` is invalid.
- *
- * ```ts
- * x = new BigNumber(123.456)
- * x.integerValue() // '123'
- * x.integerValue(BigNumber.ROUND_CEIL) // '124'
- * y = new BigNumber(-12.7)
- * y.integerValue() // '-13'
- * x.integerValue(BigNumber.ROUND_DOWN) // '-12'
- * ```
- *
- * @param {BigNumberRoundingMode} [rm] The roundng mode, an integer, 0 to 8.
- */
- integerValue(rm?: BigNumberRoundingMode): BigNumber;
-
- /**
- * Returns `true` if the value of this BigNumber is equal to the value of `n`, otherwise returns
- * `false`.
- *
- * As with JavaScript, `NaN` does not equal `NaN`.
- *
- * ```ts
- * 0 === 1e-324 // true
- * x = new BigNumber(0)
- * x.isEqualTo('1e-324') // false
- * BigNumber(-0).isEqualTo(x) // true ( -0 === 0 )
- * BigNumber(255).isEqualTo('ff', 16) // true
- *
- * y = new BigNumber(NaN)
- * y.isEqualTo(NaN) // false
- * ```
- *
- * @param n A numeric value.
- * @param [base] The base of n.
- */
- isEqualTo(n: BigNumberValue, base?: number): boolean;
-
- /**
- * Returns `true` if the value of this BigNumber is equal to the value of `n`, otherwise returns
- * `false`.
- *
- * As with JavaScript, `NaN` does not equal `NaN`.
- *
- * ```ts
- * 0 === 1e-324 // true
- * x = new BigNumber(0)
- * x.eq('1e-324') // false
- * BigNumber(-0).eq(x) // true ( -0 === 0 )
- * BigNumber(255).eq('ff', 16) // true
- *
- * y = new BigNumber(NaN)
- * y.eq(NaN) // false
- * ```
- *
- * @param n A numeric value.
- * @param [base] The base of n.
- */
- eq(n: BigNumberValue, base?: number): boolean;
-
- /**
- * Returns `true` if the value of this BigNumber is a finite number, otherwise returns `false`.
- *
- * The only possible non-finite values of a BigNumber are `NaN`, `Infinity` and `-Infinity`.
- *
- * ```ts
- * x = new BigNumber(1)
- * x.isFinite() // true
- * y = new BigNumber(Infinity)
- * y.isFinite() // false
- * ```
- */
- isFinite(): boolean;
-
- /**
- * Returns `true` if the value of this BigNumber is greater than the value of `n`, otherwise
- * returns `false`.
- *
- * ```ts
- * 0.1 > (0.3 - 0.2) // true
- * x = new BigNumber(0.1)
- * x.isGreaterThan(BigNumber(0.3).minus(0.2)) // false
- * BigNumber(0).isGreaterThan(x) // false
- * BigNumber(11, 3).isGreaterThan(11.1, 2) // true
- * ```
- *
- * @param n A numeric value.
- * @param [base] The base of n.
- */
- isGreaterThan(n: BigNumberValue, base?: number): boolean;
-
- /**
- * Returns `true` if the value of this BigNumber is greater than the value of `n`, otherwise
- * returns `false`.
- *
- * ```ts
- * 0.1 > (0.3 - 0 // true
- * x = new BigNumber(0.1)
- * x.gt(BigNumber(0.3).minus(0.2)) // false
- * BigNumber(0).gt(x) // false
- * BigNumber(11, 3).gt(11.1, 2) // true
- * ```
- *
- * @param n A numeric value.
- * @param [base] The base of n.
- */
- gt(n: BigNumberValue, base?: number): boolean;
-
- /**
- * Returns `true` if the value of this BigNumber is greater than or equal to the value of `n`,
- * otherwise returns `false`.
- *
- * ```ts
- * (0.3 - 0.2) >= 0.1 // false
- * x = new BigNumber(0.3).minus(0.2)
- * x.isGreaterThanOrEqualTo(0.1) // true
- * BigNumber(1).isGreaterThanOrEqualTo(x) // true
- * BigNumber(10, 18).isGreaterThanOrEqualTo('i', 36) // true
- * ```
- *
- * @param n A numeric value.
- * @param [base] The base of n.
- */
- isGreaterThanOrEqualTo(n: BigNumberValue, base?: number): boolean;
-
- /**
- * Returns `true` if the value of this BigNumber is greater than or equal to the value of `n`,
- * otherwise returns `false`.
- *
- * ```ts
- * (0.3 - 0.2) >= 0.1 // false
- * x = new BigNumber(0.3).minus(0.2)
- * x.gte(0.1) // true
- * BigNumber(1).gte(x) // true
- * BigNumber(10, 18).gte('i', 36) // true
- * ```
- *
- * @param n A numeric value.
- * @param [base] The base of n.
- */
- gte(n: BigNumberValue, base?: number): boolean;
-
- /**
- * Returns `true` if the value of this BigNumber is an integer, otherwise returns `false`.
- *
- * ```ts
- * x = new BigNumber(1)
- * x.isInteger() // true
- * y = new BigNumber(123.456)
- * y.isInteger() // false
- * ```
- */
- isInteger(): boolean;
-
- /**
- * Returns `true` if the value of this BigNumber is less than the value of `n`, otherwise returns
- * `false`.
- *
- * ```ts
- * (0.3 - 0.2) < 0.1 // true
- * x = new BigNumber(0.3).minus(0.2)
- * x.isLessThan(0.1) // false
- * BigNumber(0).isLessThan(x) // true
- * BigNumber(11.1, 2).isLessThan(11, 3) // true
- * ```
- *
- * @param n A numeric value.
- * @param [base] The base of n.
- */
- isLessThan(n: BigNumberValue, base?: number): boolean;
-
- /**
- * Returns `true` if the value of this BigNumber is less than the value of `n`, otherwise returns
- * `false`.
- *
- * ```ts
- * (0.3 - 0.2) < 0.1 // true
- * x = new BigNumber(0.3).minus(0.2)
- * x.lt(0.1) // false
- * BigNumber(0).lt(x) // true
- * BigNumber(11.1, 2).lt(11, 3) // true
- * ```
- *
- * @param n A numeric value.
- * @param [base] The base of n.
- */
- lt(n: BigNumberValue, base?: number): boolean;
-
- /**
- * Returns `true` if the value of this BigNumber is less than or equal to the value of `n`,
- * otherwise returns `false`.
- *
- * ```ts
- * 0.1 <= (0.3 - 0.2) // false
- * x = new BigNumber(0.1)
- * x.isLessThanOrEqualTo(BigNumber(0.3).minus(0.2)) // true
- * BigNumber(-1).isLessThanOrEqualTo(x) // true
- * BigNumber(10, 18).isLessThanOrEqualTo('i', 36) // true
- * ```
- *
- * @param n A numeric value.
- * @param [base] The base of n.
- */
- isLessThanOrEqualTo(n: BigNumberValue, base?: number): boolean;
-
- /**
- * Returns `true` if the value of this BigNumber is less than or equal to the value of `n`,
- * otherwise returns `false`.
- *
- * ```ts
- * 0.1 <= (0.3 - 0.2) // false
- * x = new BigNumber(0.1)
- * x.lte(BigNumber(0.3).minus(0.2)) // true
- * BigNumber(-1).lte(x) // true
- * BigNumber(10, 18).lte('i', 36) // true
- * ```
- *
- * @param n A numeric value.
- * @param [base] The base of n.
- */
- lte(n: BigNumberValue, base?: number): boolean;
-
- /**
- * Returns `true` if the value of this BigNumber is `NaN`, otherwise returns `false`.
- *
- * ```ts
- * x = new BigNumber(NaN)
- * x.isNaN() // true
- * y = new BigNumber('Infinity')
- * y.isNaN() // false
- * ```
- */
- isNaN(): boolean;
-
- /**
- * Returns `true` if the value of this BigNumber is negative, otherwise returns `false`.
- *
- * ```ts
- * x = new BigNumber(-0)
- * x.isNegative() // true
- * y = new BigNumber(2)
- * y.isNegative() // false
- * ```
- */
- isNegative(): boolean;
-
- /**
- * Returns `true` if the value of this BigNumber is positive, otherwise returns `false`.
- *
- * ```ts
- * x = new BigNumber(-0)
- * x.isPositive() // false
- * y = new BigNumber(2)
- * y.isPositive() // true
- * ```
- */
- isPositive(): boolean;
-
- /**
- * Returns `true` if the value of this BigNumber is zero or minus zero, otherwise returns `false`.
- *
- * ```ts
- * x = new BigNumber(-0)
- * x.isZero() // true
- * ```
- */
- isZero(): boolean;
-
- /**
- * Returns a BigNumber whose value is the value of this BigNumber minus `n`.
- *
- * The return value is always exact and unrounded.
- *
- * ```ts
- * 0.3 - 0.1 // 0.19999999999999998
- * x = new BigNumber(0.3)
- * x.minus(0.1) // '0.2'
- * x.minus(0.6, 20) // '0'
- * ```
- *
- * @param n A numeric value.
- * @param [base] The base of n.
- */
- minus(n: BigNumberValue, base?: number): BigNumber;
-
- /**
- * Returns a BigNumber whose value is the value of this BigNumber modulo `n`, i.e. the integer
- * remainder of dividing this BigNumber by `n`.
- *
- * The value returned, and in particular its sign, is dependent on the value of the `MODULO_MODE`
- * setting of this BigNumber constructor. If it is 1 (default value), the result will have the
- * same sign as this BigNumber, and it will match that of Javascript's `%` operator (within the
- * limits of double precision) and BigDecimal's `remainder` method.
- *
- * The return value is always exact and unrounded.
- *
- * See `MODULO_MODE` for a description of the other modulo modes.
- *
- * ```ts
- * 1 % 0.9 // 0.09999999999999998
- * x = new BigNumber(1)
- * x.modulo(0.9) // '0.1'
- * y = new BigNumber(33)
- * y.modulo('a', 33) // '3'
- * ```
- *
- * @param n A numeric value.
- * @param [base] The base of n.
- */
- modulo(n: BigNumberValue, base?: number): BigNumber;
-
- /**
- * Returns a BigNumber whose value is the value of this BigNumber modulo `n`, i.e. the integer
- * remainder of dividing this BigNumber by `n`.
- *
- * The value returned, and in particular its sign, is dependent on the value of the `MODULO_MODE`
- * setting of this BigNumber constructor. If it is 1 (default value), the result will have the
- * same sign as this BigNumber, and it will match that of Javascript's `%` operator (within the
- * limits of double precision) and BigDecimal's `remainder` method.
- *
- * The return value is always exact and unrounded.
- *
- * See `MODULO_MODE` for a description of the other modulo modes.
- *
- * ```ts
- * 1 % 0.9 // 0.09999999999999998
- * x = new BigNumber(1)
- * x.mod(0.9) // '0.1'
- * y = new BigNumber(33)
- * y.mod('a', 33) // '3'
- * ```
- *
- * @param n A numeric value.
- * @param [base] The base of n.
- */
- mod(n: BigNumberValue, base?: number): BigNumber;
-
- /**
- * Returns a BigNumber whose value is the value of this BigNumber multiplied by `n`.
- *
- * The return value is always exact and unrounded.
- *
- * ```ts
- * 0.6 * 3 // 1.7999999999999998
- * x = new BigNumber(0.6)
- * y = x.multipliedBy(3) // '1.8'
- * BigNumber('7e+500').multipliedBy(y) // '1.26e+501'
- * x.multipliedBy('-a', 16) // '-6'
- * ```
- *
- * @param n A numeric value.
- * @param [base] The base of n.
- */
- multipliedBy(n: BigNumberValue, base?: number) : BigNumber;
-
- /**
- * Returns a BigNumber whose value is the value of this BigNumber multiplied by `n`.
- *
- * The return value is always exact and unrounded.
- *
- * ```ts
- * 0.6 * 3 // 1.7999999999999998
- * x = new BigNumber(0.6)
- * y = x.times(3) // '1.8'
- * BigNumber('7e+500').times(y) // '1.26e+501'
- * x.times('-a', 16) // '-6'
- * ```
- *
- * @param n A numeric value.
- * @param [base] The base of n.
- */
- times(n: BigNumberValue, base?: number): BigNumber;
-
- /**
- * Returns a BigNumber whose value is the value of this BigNumber negated, i.e. multiplied by -1.
- *
- * ```ts
- * x = new BigNumber(1.8)
- * x.negated() // '-1.8'
- * y = new BigNumber(-1.3)
- * y.negated() // '1.3'
- * ```
- */
- negated(): BigNumber;
-
- /**
- * Returns a BigNumber whose value is the value of this BigNumber plus `n`.
- *
- * The return value is always exact and unrounded.
- *
- * ```ts
- * 0.1 + 0.2 // 0.30000000000000004
- * x = new BigNumber(0.1)
- * y = x.plus(0.2) // '0.3'
- * BigNumber(0.7).plus(x).plus(y) // '1'
- * x.plus('0.1', 8) // '0.225'
- * ```
- *
- * @param n A numeric value.
- * @param [base] The base of n.
- */
- plus(n: BigNumberValue, base?: number): BigNumber;
-
- /**
- * Returns the number of significant digits of the value of this BigNumber, or `null` if the value
- * of this BigNumber is ±`Infinity` or `NaN`.
- *
- * If `includeZeros` is true then any trailing zeros of the integer part of the value of this
- * BigNumber are counted as significant digits, otherwise they are not.
- *
- * Throws if `includeZeros` is invalid.
- *
- * ```ts
- * x = new BigNumber(9876.54321)
- * x.precision() // 9
- * y = new BigNumber(987000)
- * y.precision(false) // 3
- * y.precision(true) // 6
- * ```
- *
- * @param [includeZeros] Whether to include integer trailing zeros in the significant digit count.
- */
- precision(includeZeros?: boolean): number;
-
- /**
- * Returns a BigNumber whose value is the value of this BigNumber rounded to a precision of
- * `significantDigits` significant digits using rounding mode `roundingMode`.
- *
- * If `roundingMode` is omitted or is `null` or `undefined`, `ROUNDING_MODE` will be used.
- *
- * Throws if `significantDigits` or `roundingMode` is invalid.
- *
- * ```ts
- * x = new BigNumber(9876.54321)
- * x.precision(6) // '9876.54'
- * x.precision(6, BigNumber.ROUND_UP) // '9876.55'
- * x.precision(2) // '9900'
- * x.precision(2, 1) // '9800'
- * x // '9876.54321'
- * ```
- *
- * @param significantDigits Significant digits, integer, 1 to 1e+9.
- * @param [roundingMode] Rounding mode, integer, 0 to 8.
- */
- precision(significantDigits: number, roundingMode?: BigNumberRoundingMode): BigNumber;
-
- /**
- * Returns the number of significant digits of the value of this BigNumber,
- * or `null` if the value of this BigNumber is ±`Infinity` or `NaN`.
- *
- * If `includeZeros` is true then any trailing zeros of the integer part of
- * the value of this BigNumber are counted as significant digits, otherwise
- * they are not.
- *
- * Throws if `includeZeros` is invalid.
- *
- * ```ts
- * x = new BigNumber(9876.54321)
- * x.sd() // 9
- * y = new BigNumber(987000)
- * y.sd(false) // 3
- * y.sd(true) // 6
- * ```
- *
- * @param [includeZeros] Whether to include integer trailing zeros in the significant digit count.
- */
- sd(includeZeros?: boolean): number;
-
- /*
- * Returns a BigNumber whose value is the value of this BigNumber rounded to a precision of
- * `significantDigits` significant digits using rounding mode `roundingMode`.
- *
- * If `roundingMode` is omitted or is `null` or `undefined`, `ROUNDING_MODE` will be used.
- *
- * Throws if `significantDigits` or `roundingMode` is invalid.
- *
- * ```ts
- * x = new BigNumber(9876.54321)
- * x.sd(6) // '9876.54'
- * x.sd(6, BigNumber.ROUND_UP) // '9876.55'
- * x.sd(2) // '9900'
- * x.sd(2, 1) // '9800'
- * x // '9876.54321'
- * ```
- *
- * @param significantDigits Significant digits, integer, 1 to 1e+9.
- * @param [roundingMode] Rounding mode, integer, 0 to 8.
- */
- sd(significantDigits: number, roundingMode?: BigNumberRoundingMode): BigNumber;
-
- /**
- * Returns a BigNumber whose value is the value of this BigNumber shifted by `n` places.
- *
- * The shift is of the decimal point, i.e. of powers of ten, and is to the left if `n` is negative
- * or to the right if `n` is positive.
- *
- * The return value is always exact and unrounded.
- *
- * Throws if `n` is invalid.
- *
- * ```ts
- * x = new BigNumber(1.23)
- * x.shiftedBy(3) // '1230'
- * x.shiftedBy(-3) // '0.00123'
- * ```
- *
- * @param n The shift value, integer, -9007199254740991 to 9007199254740991.
- */
- shiftedBy(n: number): BigNumber;
-
- /**
- * Returns a BigNumber whose value is the square root of the value of this BigNumber, rounded
- * according to the current `DECIMAL_PLACES` and `ROUNDING_MODE` settings.
- *
- * The return value will be correctly rounded, i.e. rounded as if the result was first calculated
- * to an infinite number of correct digits before rounding.
- *
- * ```ts
- * x = new BigNumber(16)
- * x.squareRoot() // '4'
- * y = new BigNumber(3)
- * y.squareRoot() // '1.73205080756887729353'
- * ```
- */
- squareRoot(): BigNumber;
-
- /**
- * Returns a BigNumber whose value is the square root of the value of this BigNumber, rounded
- * according to the current `DECIMAL_PLACES` and `ROUNDING_MODE` settings.
- *
- * The return value will be correctly rounded, i.e. rounded as if the result was first calculated
- * to an infinite number of correct digits before rounding.
- *
- * ```ts
- * x = new BigNumber(16)
- * x.sqrt() // '4'
- * y = new BigNumber(3)
- * y.sqrt() // '1.73205080756887729353'
- * ```
- */
- sqrt(): BigNumber;
-
- /**
- * Returns a string representing the value of this BigNumber in exponential notation rounded using
- * rounding mode `roundingMode` to `decimalPlaces` decimal places, i.e with one digit before the
- * decimal point and `decimalPlaces` digits after it.
- *
- * If the value of this BigNumber in exponential notation has fewer than `decimalPlaces` fraction
- * digits, the return value will be appended with zeros accordingly.
- *
- * If `decimalPlaces` is omitted, or is `null` or `undefined`, the number of digits after the
- * decimal point defaults to the minimum number of digits necessary to represent the value
- * exactly.
- *
- * If `roundingMode` is omitted or is `null` or `undefined`, `ROUNDING_MODE` is used.
- *
- * Throws if `decimalPlaces` or `roundingMode` is invalid.
- *
- * ```ts
- * x = 45.6
- * y = new BigNumber(x)
- * x.toExponential() // '4.56e+1'
- * y.toExponential() // '4.56e+1'
- * x.toExponential(0) // '5e+1'
- * y.toExponential(0) // '5e+1'
- * x.toExponential(1) // '4.6e+1'
- * y.toExponential(1) // '4.6e+1'
- * y.toExponential(1, 1) // '4.5e+1' (ROUND_DOWN)
- * x.toExponential(3) // '4.560e+1'
- * y.toExponential(3) // '4.560e+1'
- * ```
- *
- * @param [decimalPlaces] Decimal places, integer, 0 to 1e+9.
- * @param [roundingMode] Rounding mode, integer, 0 to 8.
- */
- toExponential(decimalPlaces?: number, roundingMode?: BigNumberRoundingMode): string;
-
- /**
- * Returns a string representing the value of this BigNumber in normal (fixed-point) notation
- * rounded to `decimalPlaces` decimal places using rounding mode `roundingMode`.
- *
- * If the value of this BigNumber in normal notation has fewer than `decimalPlaces` fraction
- * digits, the return value will be appended with zeros accordingly.
- *
- * Unlike `Number.prototype.toFixed`, which returns exponential notation if a number is greater or
- * equal to 10**21, this method will always return normal notation.
- *
- * If `decimalPlaces` is omitted or is `null` or `undefined`, the return value will be unrounded
- * and in normal notation. This is also unlike `Number.prototype.toFixed`, which returns the value
- * to zero decimal places. It is useful when normal notation is required and the current
- * `EXPONENTIAL_AT` setting causes `toString` to return exponential notation.
- *
- * If `roundingMode` is omitted or is `null` or `undefined`, `ROUNDING_MODE` is used.
- *
- * Throws if `decimalPlaces` or `roundingMode` is invalid.
- *
- * ```ts
- * x = 3.456
- * y = new BigNumber(x)
- * x.toFixed() // '3'
- * y.toFixed() // '3.456'
- * y.toFixed(0) // '3'
- * x.toFixed(2) // '3.46'
- * y.toFixed(2) // '3.46'
- * y.toFixed(2, 1) // '3.45' (ROUND_DOWN)
- * x.toFixed(5) // '3.45600'
- * y.toFixed(5) // '3.45600'
- * ```
- *
- * @param [decimalPlaces] Decimal places, integer, 0 to 1e+9.
- * @param [roundingMode] Rounding mode, integer, 0 to 8.
- */
- toFixed(decimalPlaces?: number, roundingMode?: BigNumberRoundingMode): string;
-
- /**
- * Returns a string representing the value of this BigNumber in normal (fixed-point) notation
- * rounded to `decimalPlaces` decimal places using rounding mode `roundingMode`, and formatted
- * according to the properties of the `FORMAT` object.
- *
- * The properties of the `FORMAT` object are shown in the examples below.
- *
- * If `decimalPlaces` is omitted or is `null` or `undefined`, then the return value is not
- * rounded to a fixed number of decimal places.
- *
- * If `roundingMode` is omitted or is `null` or `undefined`, `ROUNDING_MODE` is used.
- *
- * Throws if `decimalPlaces` or `roundingMode` is invalid.
- *
- * ```ts
- * format = {
- * decimalSeparator: '.',
- * groupSeparator: ',',
- * groupSize: 3,
- * secondaryGroupSize: 0,
- * fractionGroupSeparator: ' ',
- * fractionGroupSize: 0
- * }
- * BigNumber.config({ FORMAT: format })
- *
- * x = new BigNumber('123456789.123456789')
- * x.toFormat() // '123,456,789.123456789'
- * x.toFormat(1) // '123,456,789.1'
- *
- * format.groupSeparator = ' '
- * format.fractionGroupSize = 5
- * x.toFormat() // '123 456 789.12345 6789'
- *
- * BigNumber.config({
- * FORMAT: {
- * decimalSeparator: ',',
- * groupSeparator: '.',
- * groupSize: 3,
- * secondaryGroupSize: 2
- * }
- * })
- *
- * x.toFormat(6) // '12.34.56.789,123'
- * ```
- *
- * @param [decimalPlaces] Decimal places, integer, 0 to 1e+9.
- * @param [roundingMode] Rounding mode, integer, 0 to 8.
- */
- toFormat(decimalPlaces?: number, roundingMode?: BigNumberRoundingMode): string;
-
- /**
- * Returns a string array representing the value of this BigNumber as a simple fraction with an
- * integer numerator and an integer denominator. The denominator will be a positive non-zero value
- * less than or equal to `max_denominator`.
- *
- * If a maximum denominator, `max_denominator`, is not specified, or is `null` or `undefined`, the
- * denominator will be the lowest value necessary to represent the number exactly.
- *
- * Throws if `max_denominator` is invalid.
- *
- * ```ts
- * x = new BigNumber(1.75)
- * x.toFraction() // '7, 4'
- *
- * pi = new BigNumber('3.14159265358')
- * pi.toFraction() // '157079632679,50000000000'
- * pi.toFraction(100000) // '312689, 99532'
- * pi.toFraction(10000) // '355, 113'
- * pi.toFraction(100) // '311, 99'
- * pi.toFraction(10) // '22, 7'
- * pi.toFraction(1) // '3, 1'
- * ```
- *
- * @param [max_denominator] The maximum denominator, integer, >= 1 and < Infinity.
- */
- toFraction(max_denominator?: BigNumberValue): BigNumber[];
-
- /**
- * As `valueOf`.
- */
- toJSON(): string;
-
- /**
- * Returns the value of this BigNumber as a JavaScript primitive number.
- *
- * Using the unary plus operator gives the same result.
- *
- * ```ts
- * x = new BigNumber(456.789)
- * x.toNumber() // 456.789
- * +x // 456.789
- *
- * y = new BigNumber('45987349857634085409857349856430985')
- * y.toNumber() // 4.598734985763409e+34
- *
- * z = new BigNumber(-0)
- * 1 / z.toNumber() // -Infinity
- * 1 / +z // -Infinity
- * ```
- */
- toNumber(): number;
-
- /**
- * Returns a string representing the value of this BigNumber rounded to `significantDigits`
- * significant digits using rounding mode `roundingMode`.
- *
- * If `significantDigits` is less than the number of digits necessary to represent the integer
- * part of the value in normal (fixed-point) notation, then exponential notation is used.
- *
- * If `significantDigits` is omitted, or is `null` or `undefined`, then the return value is the
- * same as `n.toString()`.
- *
- * If `roundingMode` is omitted or is `null` or `undefined`, `ROUNDING_MODE` is used.
- *
- * Throws if `significantDigits` or `roundingMode` is invalid.
- *
- * ```ts
- * x = 45.6
- * y = new BigNumber(x)
- * x.toPrecision() // '45.6'
- * y.toPrecision() // '45.6'
- * x.toPrecision(1) // '5e+1'
- * y.toPrecision(1) // '5e+1'
- * y.toPrecision(2, 0) // '4.6e+1' (ROUND_UP)
- * y.toPrecision(2, 1) // '4.5e+1' (ROUND_DOWN)
- * x.toPrecision(5) // '45.600'
- * y.toPrecision(5) // '45.600'
- * ```
- *
- * @param [significantDigits] Significant digits, integer, 1 to 1e+9.
- * @param [roundingMode] Rounding mode, integer 0 to 8.
- */
- toPrecision(significantDigits?: number, roundingMode?: BigNumberRoundingMode): string;
-
- /**
- * Returns a string representing the value of this BigNumber in base `base`, or base 10 if `base`
- * is omitted or is `null` or `undefined`.
- *
- * For bases above 10, and using the default base conversion alphabet (see `ALPHABET`), values
- * from 10 to 35 are represented by a-z (the same as `Number.prototype.toString`).
- *
- * If a base is specified the value is rounded according to the current `DECIMAL_PLACES` and
- * `ROUNDING_MODE` settings, otherwise it is not.
- *
- * If a base is not specified, and this BigNumber has a positive exponent that is equal to or
- * greater than the positive component of the current `EXPONENTIAL_AT` setting, or a negative
- * exponent equal to or less than the negative component of the setting, then exponential notation
- * is returned.
- *
- * If `base` is `null` or `undefined` it is ignored.
- *
- * Throws if `base` is invalid.
- *
- * ```ts
- * x = new BigNumber(750000)
- * x.toString() // '750000'
- * BigNumber.config({ EXPONENTIAL_AT: 5 })
- * x.toString() // '7.5e+5'
- *
- * y = new BigNumber(362.875)
- * y.toString(2) // '101101010.111'
- * y.toString(9) // '442.77777777777777777778'
- * y.toString(32) // 'ba.s'
- *
- * BigNumber.config({ DECIMAL_PLACES: 4 });
- * z = new BigNumber('1.23456789')
- * z.toString() // '1.23456789'
- * z.toString(10) // '1.2346'
- * ```
- *
- * @param [base] The base, integer, 2 to 36 (or `ALPHABET.length`, see `ALPHABET`).
- */
- toString(base?: number): string;
-
- /**
- * As `toString`, but does not accept a base argument and includes the minus sign for negative
- * zero.
- *
- * ``ts
- * x = new BigNumber('-0')
- * x.toString() // '0'
- * x.valueOf() // '-0'
- * y = new BigNumber('1.777e+457')
- * y.valueOf() // '1.777e+457'
- * ```
- */
- valueOf(): string;
-
- /**
- * Returns a new independent BigNumber constructor with configuration as described by `object`, or
- * with the default configuration if object is `null` or `undefined`.
- *
- * Throws if `object` is not an object.
- *
- * ```ts
- * BigNumber.config({ DECIMAL_PLACES: 5 })
- * BN = BigNumber.clone({ DECIMAL_PLACES: 9 })
- *
- * x = new BigNumber(1)
- * y = new BN(1)
- *
- * x.div(3) // 0.33333
- * y.div(3) // 0.333333333
- *
- * // BN = BigNumber.clone({ DECIMAL_PLACES: 9 }) is equivalent to:
- * BN = BigNumber.clone()
- * BN.config({ DECIMAL_PLACES: 9 })
- * ```
- *
- * @param [object] The configuration object.
- */
- static clone(object?: BigNumberConfig): BigNumberConstructor;
-
- /**
- * Configures the settings that apply to this BigNumber constructor.
- *
- * The configuration object, `object`, contains any number of the properties shown in the example
- * below.
- *
- * Returns an object with the above properties and their current values.
- *
- * Throws if `object` is not an object, or if an invalid value is assigned to one or more of the
- * properties.
- *
- * ```ts
- * BigNumber.config({
- * DECIMAL_PLACES: 40,
- * ROUNDING_MODE: BigNumber.ROUND_HALF_CEIL,
- * EXPONENTIAL_AT: [-10, 20],
- * RANGE: [-500, 500],
- * CRYPTO: true,
- * MODULO_MODE: BigNumber.ROUND_FLOOR,
- * POW_PRECISION: 80,
- * FORMAT: {
- * groupSize: 3,
- * groupSeparator: ' ',
- * decimalSeparator: ','
- * },
- * ALPHABET: '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ$_'
- * });
- *
- * BigNumber.config().DECIMAL_PLACES // 40
- * ```
- *
- * @param object The configuration object.
- */
- static config(object: BigNumberConfig): BigNumberConfig;
-
- /**
- * Returns `true` if `value` is a BigNumber instance, otherwise returns `false`.
- *
- * ```ts
- * x = 42
- * y = new BigNumber(x)
- *
- * BigNumber.isBigNumber(x) // false
- * y instanceof BigNumber // true
- * BigNumber.isBigNumber(y) // true
- *
- * BN = BigNumber.clone();
- * z = new BN(x)
- * z instanceof BigNumber // false
- * BigNumber.isBigNumber(z) // true
- * ```
- *
- * @param value The value to test.
- */
- static isBigNumber(value: any): boolean;
-
- /**
- *
- * Returns a BigNumber whose value is the maximum of the arguments.
- *
- * Accepts either an argument list or an array of values.
- *
- * The return value is always exact and unrounded.
- *
- * ```ts
- * x = new BigNumber('3257869345.0378653')
- * BigNumber.maximum(4e9, x, '123456789.9') // '4000000000'
- *
- * arr = [12, '13', new BigNumber(14)]
- * BigNumber.maximum(arr) // '14'
- * ```
- *
- * @param n A numeric value.
- */
- static maximum(...n: BigNumberValue[]): BigNumber;
-
- /**
- * Returns a BigNumber whose value is the maximum of the arguments.
- *
- * Accepts either an argument list or an array of values.
- *
- * The return value is always exact and unrounded.
- *
- * ```ts
- * x = new BigNumber('3257869345.0378653')
- * BigNumber.max(4e9, x, '123456789.9') // '4000000000'
- *
- * arr = [12, '13', new BigNumber(14)]
- * BigNumber.max(arr) // '14'
- * ```
- *
- * @param n A numeric value.
- */
- static max(...n: BigNumberValue[]): BigNumber;
-
- /**
- * Returns a BigNumber whose value is the minimum of the arguments.
- *
- * Accepts either an argument list or an array of values.
- *
- * The return value is always exact and unrounded.
- *
- * ```ts
- * x = new BigNumber('3257869345.0378653')
- * BigNumber.minimum(4e9, x, '123456789.9') // '123456789.9'
- *
- * arr = [2, new BigNumber(-14), '-15.9999', -12]
- * BigNumber.minimum(arr) // '-15.9999'
- * ```
- *
- * @param n A numeric value.
- */
- static minimum(...n: BigNumberValue[]): BigNumber;
-
- /**
- * Returns a BigNumber whose value is the minimum of the arguments.
- *
- * Accepts either an argument list or an array of values.
- *
- * The return value is always exact and unrounded.
- *
- * ```ts
- * x = new BigNumber('3257869345.0378653')
- * BigNumber.min(4e9, x, '123456789.9') // '123456789.9'
- *
- * arr = [2, new BigNumber(-14), '-15.9999', -12]
- * BigNumber.min(arr) // '-15.9999'
- * ```
- *
- * @param n A numeric value.
- */
- static min(...n: BigNumberValue[]): BigNumber;
-
- /**
- * Returns a new BigNumber with a pseudo-random value equal to or greater than 0 and less than 1.
- *
- * The return value will have `decimalPlaces` decimal places, or less if trailing zeros are
- * produced. If `decimalPlaces` is omitted, the current `DECIMAL_PLACES` setting will be used.
- *
- * Depending on the value of this BigNumber constructor's `CRYPTO` setting and the support for the
- * `crypto` object in the host environment, the random digits of the return value are generated by
- * either `Math.random` (fastest), `crypto.getRandomValues` (Web Cryptography API in recent
- * browsers) or `crypto.randomBytes` (Node.js).
- *
- * If `CRYPTO` is true, i.e. one of the `crypto` methods is to be used, the value of a returned
- * BigNumber should be cryptographically secure and statistically indistinguishable from a random
- * value.
- *
- * Throws if `decimalPlaces` is invalid.
- *
- * ```ts
- * BigNumber.config({ DECIMAL_PLACES: 10 })
- * BigNumber.random() // '0.4117936847'
- * BigNumber.random(20) // '0.78193327636914089009'
- * ```
- *
- * @param [decimalPlaces] Decimal places, integer, 0 to 1e+9.
- */
- static random(decimalPlaces?: number): BigNumber;
-
- /**
- * Configures the settings that apply to this BigNumber constructor.
- *
- * The configuration object, `object`, contains any number of the properties shown in the example
- * below.
- *
- * Returns an object with the above properties and their current values.
- *
- * Throws if `object` is not an object, or if an invalid value is assigned to one or more of the
- * properties.
- *
- * ```ts
- * BigNumber.set({
- * DECIMAL_PLACES: 40,
- * ROUNDING_MODE: BigNumber.ROUND_HALF_CEIL,
- * EXPONENTIAL_AT: [-10, 20],
- * RANGE: [-500, 500],
- * CRYPTO: true,
- * MODULO_MODE: BigNumber.ROUND_FLOOR,
- * POW_PRECISION: 80,
- * FORMAT: {
- * groupSize: 3,
- * groupSeparator: ' ',
- * decimalSeparator: ','
- * },
- * ALPHABET: '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ$_'
- * });
- *
- * BigNumber.set().DECIMAL_PLACES // 40
- * ```
- *
- * @param object The configuration object.
- */
- static set(object: BigNumberConfig): BigNumberConfig;
-
- /**
- * Helps ES6 import.
- */
- private static readonly default?: BigNumberConstructor;
-
- /**
- * Helps ES6 import.
- */
- private static readonly BigNumber?: BigNumberConstructor;
-
- /**
- * Rounds away from zero.
- */
- static readonly ROUND_UP: 0;
-
- /**
- * Rounds towards zero.
- */
- static readonly ROUND_DOWN: 1;
-
- /**
- * Rounds towards Infinity.
- */
- static readonly ROUND_CEIL: 2;
-
- /**
- * Rounds towards -Infinity.
- */
- static readonly ROUND_FLOOR: 3;
-
- /**
- * Rounds towards nearest neighbour. If equidistant, rounds away from zero .
- */
- static readonly ROUND_HALF_UP: 4;
-
- /**
- * Rounds towards nearest neighbour. If equidistant, rounds towards zero.
- */
- static readonly ROUND_HALF_DOWN: 5;
-
- /**
- * Rounds towards nearest neighbour. If equidistant, rounds towards even neighbour.
- */
- static readonly ROUND_HALF_EVEN: 6;
-
- /**
- * Rounds towards nearest neighbour. If equidistant, rounds towards Infinity.
- */
- static readonly ROUND_HALF_CEIL: 7;
-
- /**
- * Rounds towards nearest neighbour. If equidistant, rounds towards -Infinity.
- */
- static readonly ROUND_HALF_FLOOR: 8;
-
- /**
- * See `MODULO_MODE`.
- */
- static readonly EUCLID: 9;
-}
-
-
-export default BigNumber;
-
-export namespace BigNumber {
- export type Config = BigNumberConfig;
- export type Constructor = BigNumberConstructor;
- export type Format = BigNumberFormat;
- export type Instance = BigNumberInstance;
- export type ModuloMode = BigNumberModuloMode;
- export type RoundingMode = BigNumberRoundingMode;
- export type Value = BigNumberValue;
-}
-
-/**
- * Browsers.
- */
-declare global {
- const BigNumber: BigNumberConstructor;
- type BigNumber = BigNumberInstance;
-
- namespace BigNumber {
- type Config = BigNumberConfig;
- type Constructor = BigNumberConstructor;
- type Format = BigNumberFormat;
- type Instance = BigNumberInstance;
- type ModuloMode = BigNumberModuloMode;
- type RoundingMode = BigNumberRoundingMode;
- type Value = BigNumberValue;
- }
-} \ No newline at end of file
diff --git a/packages/instant/test/util/dependencies/prevbignumber.js b/packages/instant/test/util/dependencies/prevbignumber.js
deleted file mode 100644
index e2d3f2146..000000000
--- a/packages/instant/test/util/dependencies/prevbignumber.js
+++ /dev/null
@@ -1,2705 +0,0 @@
-/*
- * bignumber.js v6.0.0
- * A JavaScript library for arbitrary-precision arithmetic.
- * https://github.com/MikeMcl/bignumber.js
- * Copyright (c) 2018 Michael Mclaughlin <M8ch88l@gmail.com>
- * MIT Licensed.
- *
- * BigNumber.prototype methods | BigNumber methods
- * |
- * absoluteValue abs | clone
- * comparedTo | config set
- * decimalPlaces dp | DECIMAL_PLACES
- * dividedBy div | ROUNDING_MODE
- * dividedToIntegerBy idiv | EXPONENTIAL_AT
- * exponentiatedBy pow | RANGE
- * integerValue | CRYPTO
- * isEqualTo eq | MODULO_MODE
- * isFinite | POW_PRECISION
- * isGreaterThan gt | FORMAT
- * isGreaterThanOrEqualTo gte | ALPHABET
- * isInteger | isBigNumber
- * isLessThan lt | maximum max
- * isLessThanOrEqualTo lte | minimum min
- * isNaN | random
- * isNegative |
- * isPositive |
- * isZero |
- * minus |
- * modulo mod |
- * multipliedBy times |
- * negated |
- * plus |
- * precision sd |
- * shiftedBy |
- * squareRoot sqrt |
- * toExponential |
- * toFixed |
- * toFormat |
- * toFraction |
- * toJSON |
- * toNumber |
- * toPrecision |
- * toString |
- * valueOf |
- *
- */
-
-
-var BigNumber,
- isNumeric = /^-?(?:\d+(?:\.\d*)?|\.\d+)(?:e[+-]?\d+)?$/i,
-
- mathceil = Math.ceil,
- mathfloor = Math.floor,
-
- bignumberError = '[BigNumber Error] ',
- tooManyDigits = bignumberError + 'Number primitive has more than 15 significant digits: ',
-
- BASE = 1e14,
- LOG_BASE = 14,
- MAX_SAFE_INTEGER = 0x1fffffffffffff, // 2^53 - 1
- // MAX_INT32 = 0x7fffffff, // 2^31 - 1
- POWS_TEN = [1, 10, 100, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13],
- SQRT_BASE = 1e7,
-
- // EDITABLE
- // The limit on the value of DECIMAL_PLACES, TO_EXP_NEG, TO_EXP_POS, MIN_EXP, MAX_EXP, and
- // the arguments to toExponential, toFixed, toFormat, and toPrecision.
- MAX = 1E9; // 0 to MAX_INT32
-
-
-/*
- * Create and return a BigNumber constructor.
- */
-function clone(configObject) {
- var div, convertBase, parseNumeric,
- P = BigNumber.prototype,
- ONE = new BigNumber(1),
-
-
- //----------------------------- EDITABLE CONFIG DEFAULTS -------------------------------
-
-
- // The default values below must be integers within the inclusive ranges stated.
- // The values can also be changed at run-time using BigNumber.set.
-
- // The maximum number of decimal places for operations involving division.
- DECIMAL_PLACES = 20, // 0 to MAX
-
- // The rounding mode used when rounding to the above decimal places, and when using
- // toExponential, toFixed, toFormat and toPrecision, and round (default value).
- // UP 0 Away from zero.
- // DOWN 1 Towards zero.
- // CEIL 2 Towards +Infinity.
- // FLOOR 3 Towards -Infinity.
- // HALF_UP 4 Towards nearest neighbour. If equidistant, up.
- // HALF_DOWN 5 Towards nearest neighbour. If equidistant, down.
- // HALF_EVEN 6 Towards nearest neighbour. If equidistant, towards even neighbour.
- // HALF_CEIL 7 Towards nearest neighbour. If equidistant, towards +Infinity.
- // HALF_FLOOR 8 Towards nearest neighbour. If equidistant, towards -Infinity.
- ROUNDING_MODE = 4, // 0 to 8
-
- // EXPONENTIAL_AT : [TO_EXP_NEG , TO_EXP_POS]
-
- // The exponent value at and beneath which toString returns exponential notation.
- // Number type: -7
- TO_EXP_NEG = -7, // 0 to -MAX
-
- // The exponent value at and above which toString returns exponential notation.
- // Number type: 21
- TO_EXP_POS = 21, // 0 to MAX
-
- // RANGE : [MIN_EXP, MAX_EXP]
-
- // The minimum exponent value, beneath which underflow to zero occurs.
- // Number type: -324 (5e-324)
- MIN_EXP = -1e7, // -1 to -MAX
-
- // The maximum exponent value, above which overflow to Infinity occurs.
- // Number type: 308 (1.7976931348623157e+308)
- // For MAX_EXP > 1e7, e.g. new BigNumber('1e100000000').plus(1) may be slow.
- MAX_EXP = 1e7, // 1 to MAX
-
- // Whether to use cryptographically-secure random number generation, if available.
- CRYPTO = false, // true or false
-
- // The modulo mode used when calculating the modulus: a mod n.
- // The quotient (q = a / n) is calculated according to the corresponding rounding mode.
- // The remainder (r) is calculated as: r = a - n * q.
- //
- // UP 0 The remainder is positive if the dividend is negative, else is negative.
- // DOWN 1 The remainder has the same sign as the dividend.
- // This modulo mode is commonly known as 'truncated division' and is
- // equivalent to (a % n) in JavaScript.
- // FLOOR 3 The remainder has the same sign as the divisor (Python %).
- // HALF_EVEN 6 This modulo mode implements the IEEE 754 remainder function.
- // EUCLID 9 Euclidian division. q = sign(n) * floor(a / abs(n)).
- // The remainder is always positive.
- //
- // The truncated division, floored division, Euclidian division and IEEE 754 remainder
- // modes are commonly used for the modulus operation.
- // Although the other rounding modes can also be used, they may not give useful results.
- MODULO_MODE = 1, // 0 to 9
-
- // The maximum number of significant digits of the result of the exponentiatedBy operation.
- // If POW_PRECISION is 0, there will be unlimited significant digits.
- POW_PRECISION = 0, // 0 to MAX
-
- // The format specification used by the BigNumber.prototype.toFormat method.
- FORMAT = {
- decimalSeparator: '.',
- groupSeparator: ',',
- groupSize: 3,
- secondaryGroupSize: 0,
- fractionGroupSeparator: '\xA0', // non-breaking space
- fractionGroupSize: 0
- },
-
- // The alphabet used for base conversion.
- // It must be at least 2 characters long, with no '.' or repeated character.
- // '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ$_'
- ALPHABET = '0123456789abcdefghijklmnopqrstuvwxyz';
-
-
- //------------------------------------------------------------------------------------------
-
-
- // CONSTRUCTOR
-
-
- /*
- * The BigNumber constructor and exported function.
- * Create and return a new instance of a BigNumber object.
- *
- * n {number|string|BigNumber} A numeric value.
- * [b] {number} The base of n. Integer, 2 to ALPHABET.length inclusive.
- */
- function BigNumber( n, b ) {
- var alphabet, c, e, i, isNum, len, str,
- x = this;
-
- // Enable constructor usage without new.
- if ( !( x instanceof BigNumber ) ) {
-
- // Don't throw on constructor call without new (#81).
- // '[BigNumber Error] Constructor call without new: {n}'
- //throw Error( bignumberError + ' Constructor call without new: ' + n );
- return new BigNumber( n, b );
- }
-
- if ( b == null ) {
-
- // Duplicate.
- if ( n instanceof BigNumber ) {
- x.s = n.s;
- x.e = n.e;
- x.c = ( n = n.c ) ? n.slice() : n;
- return;
- }
-
- isNum = typeof n == 'number';
-
- if ( isNum && n * 0 == 0 ) {
-
- // Use `1 / n` to handle minus zero also.
- x.s = 1 / n < 0 ? ( n = -n, -1 ) : 1;
-
- // Faster path for integers.
- if ( n === ~~n ) {
- for ( e = 0, i = n; i >= 10; i /= 10, e++ );
- x.e = e;
- x.c = [n];
- return;
- }
-
- str = n + '';
- } else {
- if ( !isNumeric.test( str = n + '' ) ) return parseNumeric( x, str, isNum );
- x.s = str.charCodeAt(0) == 45 ? ( str = str.slice(1), -1 ) : 1;
- }
-
- } else {
-
- // '[BigNumber Error] Base {not a primitive number|not an integer|out of range}: {b}'
- intCheck( b, 2, ALPHABET.length, 'Base' );
- str = n + '';
-
- // Allow exponential notation to be used with base 10 argument, while
- // also rounding to DECIMAL_PLACES as with other bases.
- if ( b == 10 ) {
- x = new BigNumber( n instanceof BigNumber ? n : str );
- return round( x, DECIMAL_PLACES + x.e + 1, ROUNDING_MODE );
- }
-
- isNum = typeof n == 'number';
-
- if (isNum) {
-
- // Avoid potential interpretation of Infinity and NaN as base 44+ values.
- if ( n * 0 != 0 ) return parseNumeric( x, str, isNum, b );
-
- x.s = 1 / n < 0 ? ( str = str.slice(1), -1 ) : 1;
-
- // '[BigNumber Error] Number primitive has more than 15 significant digits: {n}'
- if ( str.replace( /^0\.0*|\./, '' ).length > 15 ) {
- throw Error
- ( tooManyDigits + n );
- }
-
- // Prevent later check for length on converted number.
- isNum = false;
- } else {
- x.s = str.charCodeAt(0) === 45 ? ( str = str.slice(1), -1 ) : 1;
-
- // Allow e.g. hexadecimal 'FF' as well as 'ff'.
- if ( b > 10 && b < 37 ) str = str.toLowerCase();
- }
-
- alphabet = ALPHABET.slice( 0, b );
- e = i = 0;
-
- // Check that str is a valid base b number.
- // Don't use RegExp so alphabet can contain special characters.
- for ( len = str.length; i < len; i++ ) {
- if ( alphabet.indexOf( c = str.charAt(i) ) < 0 ) {
- if ( c == '.' ) {
-
- // If '.' is not the first character and it has not be found before.
- if ( i > e ) {
- e = len;
- continue;
- }
- }
-
- return parseNumeric( x, n + '', isNum, b );
- }
- }
-
- str = convertBase( str, b, 10, x.s );
- }
-
- // Decimal point?
- if ( ( e = str.indexOf('.') ) > -1 ) str = str.replace( '.', '' );
-
- // Exponential form?
- if ( ( i = str.search( /e/i ) ) > 0 ) {
-
- // Determine exponent.
- if ( e < 0 ) e = i;
- e += +str.slice( i + 1 );
- str = str.substring( 0, i );
- } else if ( e < 0 ) {
-
- // Integer.
- e = str.length;
- }
-
- // Determine leading zeros.
- for ( i = 0; str.charCodeAt(i) === 48; i++ );
-
- // Determine trailing zeros.
- for ( len = str.length; str.charCodeAt(--len) === 48; );
- str = str.slice( i, len + 1 );
-
- if (str) {
- len = str.length;
-
- // '[BigNumber Error] Number primitive has more than 15 significant digits: {n}'
- if ( isNum && len > 15 && ( n > MAX_SAFE_INTEGER || n !== mathfloor(n) ) ) {
- throw Error
- ( tooManyDigits + ( x.s * n ) );
- }
-
- e = e - i - 1;
-
- // Overflow?
- if ( e > MAX_EXP ) {
-
- // Infinity.
- x.c = x.e = null;
-
- // Underflow?
- } else if ( e < MIN_EXP ) {
-
- // Zero.
- x.c = [ x.e = 0 ];
- } else {
- x.e = e;
- x.c = [];
-
- // Transform base
-
- // e is the base 10 exponent.
- // i is where to slice str to get the first element of the coefficient array.
- i = ( e + 1 ) % LOG_BASE;
- if ( e < 0 ) i += LOG_BASE;
-
- if ( i < len ) {
- if (i) x.c.push( +str.slice( 0, i ) );
-
- for ( len -= LOG_BASE; i < len; ) {
- x.c.push( +str.slice( i, i += LOG_BASE ) );
- }
-
- str = str.slice(i);
- i = LOG_BASE - str.length;
- } else {
- i -= len;
- }
-
- for ( ; i--; str += '0' );
- x.c.push( +str );
- }
- } else {
-
- // Zero.
- x.c = [ x.e = 0 ];
- }
- }
-
-
- // CONSTRUCTOR PROPERTIES
-
-
- BigNumber.clone = clone;
-
- BigNumber.ROUND_UP = 0;
- BigNumber.ROUND_DOWN = 1;
- BigNumber.ROUND_CEIL = 2;
- BigNumber.ROUND_FLOOR = 3;
- BigNumber.ROUND_HALF_UP = 4;
- BigNumber.ROUND_HALF_DOWN = 5;
- BigNumber.ROUND_HALF_EVEN = 6;
- BigNumber.ROUND_HALF_CEIL = 7;
- BigNumber.ROUND_HALF_FLOOR = 8;
- BigNumber.EUCLID = 9;
-
-
- /*
- * Configure infrequently-changing library-wide settings.
- *
- * Accept an object with the following optional properties (if the value of a property is
- * a number, it must be an integer within the inclusive range stated):
- *
- * DECIMAL_PLACES {number} 0 to MAX
- * ROUNDING_MODE {number} 0 to 8
- * EXPONENTIAL_AT {number|number[]} -MAX to MAX or [-MAX to 0, 0 to MAX]
- * RANGE {number|number[]} -MAX to MAX (not zero) or [-MAX to -1, 1 to MAX]
- * CRYPTO {boolean} true or false
- * MODULO_MODE {number} 0 to 9
- * POW_PRECISION {number} 0 to MAX
- * ALPHABET {string} A string of two or more unique characters, and not
- * containing '.'. The empty string, null or undefined
- * resets the alphabet to its default value.
- * FORMAT {object} An object with some of the following properties:
- * decimalSeparator {string}
- * groupSeparator {string}
- * groupSize {number}
- * secondaryGroupSize {number}
- * fractionGroupSeparator {string}
- * fractionGroupSize {number}
- *
- * (The values assigned to the above FORMAT object properties are not checked for validity.)
- *
- * E.g.
- * BigNumber.config({ DECIMAL_PLACES : 20, ROUNDING_MODE : 4 })
- *
- * Ignore properties/parameters set to null or undefined, except for ALPHABET.
- *
- * Return an object with the properties current values.
- */
- BigNumber.config = BigNumber.set = function (obj) {
- var p, v;
-
- if ( obj != null ) {
-
- if ( typeof obj == 'object' ) {
-
- // DECIMAL_PLACES {number} Integer, 0 to MAX inclusive.
- // '[BigNumber Error] DECIMAL_PLACES {not a primitive number|not an integer|out of range}: {v}'
- if ( obj.hasOwnProperty( p = 'DECIMAL_PLACES' ) ) {
- v = obj[p];
- intCheck( v, 0, MAX, p );
- DECIMAL_PLACES = v;
- }
-
- // ROUNDING_MODE {number} Integer, 0 to 8 inclusive.
- // '[BigNumber Error] ROUNDING_MODE {not a primitive number|not an integer|out of range}: {v}'
- if ( obj.hasOwnProperty( p = 'ROUNDING_MODE' ) ) {
- v = obj[p];
- intCheck( v, 0, 8, p );
- ROUNDING_MODE = v;
- }
-
- // EXPONENTIAL_AT {number|number[]}
- // Integer, -MAX to MAX inclusive or
- // [integer -MAX to 0 inclusive, 0 to MAX inclusive].
- // '[BigNumber Error] EXPONENTIAL_AT {not a primitive number|not an integer|out of range}: {v}'
- if ( obj.hasOwnProperty( p = 'EXPONENTIAL_AT' ) ) {
- v = obj[p];
- if ( isArray(v) ) {
- intCheck( v[0], -MAX, 0, p );
- intCheck( v[1], 0, MAX, p );
- TO_EXP_NEG = v[0];
- TO_EXP_POS = v[1];
- } else {
- intCheck( v, -MAX, MAX, p );
- TO_EXP_NEG = -( TO_EXP_POS = v < 0 ? -v : v );
- }
- }
-
- // RANGE {number|number[]} Non-zero integer, -MAX to MAX inclusive or
- // [integer -MAX to -1 inclusive, integer 1 to MAX inclusive].
- // '[BigNumber Error] RANGE {not a primitive number|not an integer|out of range|cannot be zero}: {v}'
- if ( obj.hasOwnProperty( p = 'RANGE' ) ) {
- v = obj[p];
- if ( isArray(v) ) {
- intCheck( v[0], -MAX, -1, p );
- intCheck( v[1], 1, MAX, p );
- MIN_EXP = v[0];
- MAX_EXP = v[1];
- } else {
- intCheck( v, -MAX, MAX, p );
- if (v) {
- MIN_EXP = -( MAX_EXP = v < 0 ? -v : v );
- } else {
- throw Error
- ( bignumberError + p + ' cannot be zero: ' + v );
- }
- }
- }
-
- // CRYPTO {boolean} true or false.
- // '[BigNumber Error] CRYPTO not true or false: {v}'
- // '[BigNumber Error] crypto unavailable'
- if ( obj.hasOwnProperty( p = 'CRYPTO' ) ) {
- v = obj[p];
- if ( v === !!v ) {
- if (v) {
- if ( typeof crypto != 'undefined' && crypto &&
- (crypto.getRandomValues || crypto.randomBytes) ) {
- CRYPTO = v;
- } else {
- CRYPTO = !v;
- throw Error
- ( bignumberError + 'crypto unavailable' );
- }
- } else {
- CRYPTO = v;
- }
- } else {
- throw Error
- ( bignumberError + p + ' not true or false: ' + v );
- }
- }
-
- // MODULO_MODE {number} Integer, 0 to 9 inclusive.
- // '[BigNumber Error] MODULO_MODE {not a primitive number|not an integer|out of range}: {v}'
- if ( obj.hasOwnProperty( p = 'MODULO_MODE' ) ) {
- v = obj[p];
- intCheck( v, 0, 9, p );
- MODULO_MODE = v;
- }
-
- // POW_PRECISION {number} Integer, 0 to MAX inclusive.
- // '[BigNumber Error] POW_PRECISION {not a primitive number|not an integer|out of range}: {v}'
- if ( obj.hasOwnProperty( p = 'POW_PRECISION' ) ) {
- v = obj[p];
- intCheck( v, 0, MAX, p );
- POW_PRECISION = v;
- }
-
- // FORMAT {object}
- // '[BigNumber Error] FORMAT not an object: {v}'
- if ( obj.hasOwnProperty( p = 'FORMAT' ) ) {
- v = obj[p];
- if ( typeof v == 'object' ) FORMAT = v;
- else throw Error
- ( bignumberError + p + ' not an object: ' + v );
- }
-
- // ALPHABET {string}
- // '[BigNumber Error] ALPHABET invalid: {v}'
- if ( obj.hasOwnProperty( p = 'ALPHABET' ) ) {
- v = obj[p];
-
- // Disallow if only one character, or contains '.' or a repeated character.
- if ( typeof v == 'string' && !/^.$|\.|(.).*\1/.test(v) ) {
- ALPHABET = v;
- } else {
- throw Error
- ( bignumberError + p + ' invalid: ' + v );
- }
- }
-
- } else {
-
- // '[BigNumber Error] Object expected: {v}'
- throw Error
- ( bignumberError + 'Object expected: ' + obj );
- }
- }
-
- return {
- DECIMAL_PLACES: DECIMAL_PLACES,
- ROUNDING_MODE: ROUNDING_MODE,
- EXPONENTIAL_AT: [ TO_EXP_NEG, TO_EXP_POS ],
- RANGE: [ MIN_EXP, MAX_EXP ],
- CRYPTO: CRYPTO,
- MODULO_MODE: MODULO_MODE,
- POW_PRECISION: POW_PRECISION,
- FORMAT: FORMAT,
- ALPHABET: ALPHABET
- };
- };
-
-
- /*
- * Return true if v is a BigNumber instance, otherwise return false.
- *
- * v {any}
- */
- BigNumber.isBigNumber = function (v) {
- return v instanceof BigNumber || v && v._isBigNumber === true || false;
- };
-
-
- /*
- * Return a new BigNumber whose value is the maximum of the arguments.
- *
- * arguments {number|string|BigNumber}
- */
- BigNumber.maximum = BigNumber.max = function () {
- return maxOrMin( arguments, P.lt );
- };
-
-
- /*
- * Return a new BigNumber whose value is the minimum of the arguments.
- *
- * arguments {number|string|BigNumber}
- */
- BigNumber.minimum = BigNumber.min = function () {
- return maxOrMin( arguments, P.gt );
- };
-
-
- /*
- * Return a new BigNumber with a random value equal to or greater than 0 and less than 1,
- * and with dp, or DECIMAL_PLACES if dp is omitted, decimal places (or less if trailing
- * zeros are produced).
- *
- * [dp] {number} Decimal places. Integer, 0 to MAX inclusive.
- *
- * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {dp}'
- * '[BigNumber Error] crypto unavailable'
- */
- BigNumber.random = (function () {
- var pow2_53 = 0x20000000000000;
-
- // Return a 53 bit integer n, where 0 <= n < 9007199254740992.
- // Check if Math.random() produces more than 32 bits of randomness.
- // If it does, assume at least 53 bits are produced, otherwise assume at least 30 bits.
- // 0x40000000 is 2^30, 0x800000 is 2^23, 0x1fffff is 2^21 - 1.
- var random53bitInt = (Math.random() * pow2_53) & 0x1fffff
- ? function () { return mathfloor( Math.random() * pow2_53 ); }
- : function () { return ((Math.random() * 0x40000000 | 0) * 0x800000) +
- (Math.random() * 0x800000 | 0); };
-
- return function (dp) {
- var a, b, e, k, v,
- i = 0,
- c = [],
- rand = new BigNumber(ONE);
-
- if ( dp == null ) dp = DECIMAL_PLACES;
- else intCheck( dp, 0, MAX );
-
- k = mathceil( dp / LOG_BASE );
-
- if (CRYPTO) {
-
- // Browsers supporting crypto.getRandomValues.
- if (crypto.getRandomValues) {
-
- a = crypto.getRandomValues( new Uint32Array( k *= 2 ) );
-
- for ( ; i < k; ) {
-
- // 53 bits:
- // ((Math.pow(2, 32) - 1) * Math.pow(2, 21)).toString(2)
- // 11111 11111111 11111111 11111111 11100000 00000000 00000000
- // ((Math.pow(2, 32) - 1) >>> 11).toString(2)
- // 11111 11111111 11111111
- // 0x20000 is 2^21.
- v = a[i] * 0x20000 + (a[i + 1] >>> 11);
-
- // Rejection sampling:
- // 0 <= v < 9007199254740992
- // Probability that v >= 9e15, is
- // 7199254740992 / 9007199254740992 ~= 0.0008, i.e. 1 in 1251
- if ( v >= 9e15 ) {
- b = crypto.getRandomValues( new Uint32Array(2) );
- a[i] = b[0];
- a[i + 1] = b[1];
- } else {
-
- // 0 <= v <= 8999999999999999
- // 0 <= (v % 1e14) <= 99999999999999
- c.push( v % 1e14 );
- i += 2;
- }
- }
- i = k / 2;
-
- // Node.js supporting crypto.randomBytes.
- } else if (crypto.randomBytes) {
-
- // buffer
- a = crypto.randomBytes( k *= 7 );
-
- for ( ; i < k; ) {
-
- // 0x1000000000000 is 2^48, 0x10000000000 is 2^40
- // 0x100000000 is 2^32, 0x1000000 is 2^24
- // 11111 11111111 11111111 11111111 11111111 11111111 11111111
- // 0 <= v < 9007199254740992
- v = ( ( a[i] & 31 ) * 0x1000000000000 ) + ( a[i + 1] * 0x10000000000 ) +
- ( a[i + 2] * 0x100000000 ) + ( a[i + 3] * 0x1000000 ) +
- ( a[i + 4] << 16 ) + ( a[i + 5] << 8 ) + a[i + 6];
-
- if ( v >= 9e15 ) {
- crypto.randomBytes(7).copy( a, i );
- } else {
-
- // 0 <= (v % 1e14) <= 99999999999999
- c.push( v % 1e14 );
- i += 7;
- }
- }
- i = k / 7;
- } else {
- CRYPTO = false;
- throw Error
- ( bignumberError + 'crypto unavailable' );
- }
- }
-
- // Use Math.random.
- if (!CRYPTO) {
-
- for ( ; i < k; ) {
- v = random53bitInt();
- if ( v < 9e15 ) c[i++] = v % 1e14;
- }
- }
-
- k = c[--i];
- dp %= LOG_BASE;
-
- // Convert trailing digits to zeros according to dp.
- if ( k && dp ) {
- v = POWS_TEN[LOG_BASE - dp];
- c[i] = mathfloor( k / v ) * v;
- }
-
- // Remove trailing elements which are zero.
- for ( ; c[i] === 0; c.pop(), i-- );
-
- // Zero?
- if ( i < 0 ) {
- c = [ e = 0 ];
- } else {
-
- // Remove leading elements which are zero and adjust exponent accordingly.
- for ( e = -1 ; c[0] === 0; c.splice(0, 1), e -= LOG_BASE);
-
- // Count the digits of the first element of c to determine leading zeros, and...
- for ( i = 1, v = c[0]; v >= 10; v /= 10, i++);
-
- // adjust the exponent accordingly.
- if ( i < LOG_BASE ) e -= LOG_BASE - i;
- }
-
- rand.e = e;
- rand.c = c;
- return rand;
- };
- })();
-
-
- // PRIVATE FUNCTIONS
-
-
- // Called by BigNumber and BigNumber.prototype.toString.
- convertBase = ( function () {
- var decimal = '0123456789';
-
- /*
- * Convert string of baseIn to an array of numbers of baseOut.
- * Eg. toBaseOut('255', 10, 16) returns [15, 15].
- * Eg. toBaseOut('ff', 16, 10) returns [2, 5, 5].
- */
- function toBaseOut( str, baseIn, baseOut, alphabet ) {
- var j,
- arr = [0],
- arrL,
- i = 0,
- len = str.length;
-
- for ( ; i < len; ) {
- for ( arrL = arr.length; arrL--; arr[arrL] *= baseIn );
-
- arr[0] += alphabet.indexOf( str.charAt( i++ ) );
-
- for ( j = 0; j < arr.length; j++ ) {
-
- if ( arr[j] > baseOut - 1 ) {
- if ( arr[j + 1] == null ) arr[j + 1] = 0;
- arr[j + 1] += arr[j] / baseOut | 0;
- arr[j] %= baseOut;
- }
- }
- }
-
- return arr.reverse();
- }
-
- // Convert a numeric string of baseIn to a numeric string of baseOut.
- // If the caller is toString, we are converting from base 10 to baseOut.
- // If the caller is BigNumber, we are converting from baseIn to base 10.
- return function ( str, baseIn, baseOut, sign, callerIsToString ) {
- var alphabet, d, e, k, r, x, xc, y,
- i = str.indexOf( '.' ),
- dp = DECIMAL_PLACES,
- rm = ROUNDING_MODE;
-
- // Non-integer.
- if ( i >= 0 ) {
- k = POW_PRECISION;
-
- // Unlimited precision.
- POW_PRECISION = 0;
- str = str.replace( '.', '' );
- y = new BigNumber(baseIn);
- x = y.pow( str.length - i );
- POW_PRECISION = k;
-
- // Convert str as if an integer, then restore the fraction part by dividing the
- // result by its base raised to a power.
-
- y.c = toBaseOut( toFixedPoint( coeffToString( x.c ), x.e, '0' ),
- 10, baseOut, decimal );
- y.e = y.c.length;
- }
-
- // Convert the number as integer.
-
- xc = toBaseOut( str, baseIn, baseOut, callerIsToString
- ? ( alphabet = ALPHABET, decimal )
- : ( alphabet = decimal, ALPHABET ) );
-
-
- // xc now represents str as an integer and converted to baseOut. e is the exponent.
- e = k = xc.length;
-
- // Remove trailing zeros.
- for ( ; xc[--k] == 0; xc.pop() );
-
- // Zero?
- if ( !xc[0] ) return alphabet.charAt(0);
-
- // Does str represent an integer? If so, no need for the division.
- if ( i < 0 ) {
- --e;
- } else {
- x.c = xc;
- x.e = e;
-
- // The sign is needed for correct rounding.
- x.s = sign;
- x = div( x, y, dp, rm, baseOut );
- xc = x.c;
- r = x.r;
- e = x.e;
- }
-
- // xc now represents str converted to baseOut.
-
- // THe index of the rounding digit.
- d = e + dp + 1;
-
- // The rounding digit: the digit to the right of the digit that may be rounded up.
- i = xc[d];
-
- // Look at the rounding digits and mode to determine whether to round up.
-
- k = baseOut / 2;
- r = r || d < 0 || xc[d + 1] != null;
-
- r = rm < 4 ? ( i != null || r ) && ( rm == 0 || rm == ( x.s < 0 ? 3 : 2 ) )
- : i > k || i == k &&( rm == 4 || r || rm == 6 && xc[d - 1] & 1 ||
- rm == ( x.s < 0 ? 8 : 7 ) );
-
- // If the index of the rounding digit is not greater than zero, or xc represents
- // zero, then the result of the base conversion is zero or, if rounding up, a value
- // such as 0.00001.
- if ( d < 1 || !xc[0] ) {
-
- // 1^-dp or 0
- str = r ? toFixedPoint( alphabet.charAt(1), -dp, alphabet.charAt(0) )
- : alphabet.charAt(0);
- } else {
-
- // Truncate xc to the required number of decimal places.
- xc.length = d;
-
- // Round up?
- if (r) {
-
- // Rounding up may mean the previous digit has to be rounded up and so on.
- for ( --baseOut; ++xc[--d] > baseOut; ) {
- xc[d] = 0;
-
- if ( !d ) {
- ++e;
- xc = [1].concat(xc);
- }
- }
- }
-
- // Determine trailing zeros.
- for ( k = xc.length; !xc[--k]; );
-
- // E.g. [4, 11, 15] becomes 4bf.
- for ( i = 0, str = ''; i <= k; str += alphabet.charAt( xc[i++] ) );
-
- // Add leading zeros, decimal point and trailing zeros as required.
- str = toFixedPoint( str, e, alphabet.charAt(0) );
- }
-
- // The caller will add the sign.
- return str;
- };
- })();
-
-
- // Perform division in the specified base. Called by div and convertBase.
- div = (function () {
-
- // Assume non-zero x and k.
- function multiply( x, k, base ) {
- var m, temp, xlo, xhi,
- carry = 0,
- i = x.length,
- klo = k % SQRT_BASE,
- khi = k / SQRT_BASE | 0;
-
- for ( x = x.slice(); i--; ) {
- xlo = x[i] % SQRT_BASE;
- xhi = x[i] / SQRT_BASE | 0;
- m = khi * xlo + xhi * klo;
- temp = klo * xlo + ( ( m % SQRT_BASE ) * SQRT_BASE ) + carry;
- carry = ( temp / base | 0 ) + ( m / SQRT_BASE | 0 ) + khi * xhi;
- x[i] = temp % base;
- }
-
- if (carry) x = [carry].concat(x);
-
- return x;
- }
-
- function compare( a, b, aL, bL ) {
- var i, cmp;
-
- if ( aL != bL ) {
- cmp = aL > bL ? 1 : -1;
- } else {
-
- for ( i = cmp = 0; i < aL; i++ ) {
-
- if ( a[i] != b[i] ) {
- cmp = a[i] > b[i] ? 1 : -1;
- break;
- }
- }
- }
- return cmp;
- }
-
- function subtract( a, b, aL, base ) {
- var i = 0;
-
- // Subtract b from a.
- for ( ; aL--; ) {
- a[aL] -= i;
- i = a[aL] < b[aL] ? 1 : 0;
- a[aL] = i * base + a[aL] - b[aL];
- }
-
- // Remove leading zeros.
- for ( ; !a[0] && a.length > 1; a.splice(0, 1) );
- }
-
- // x: dividend, y: divisor.
- return function ( x, y, dp, rm, base ) {
- var cmp, e, i, more, n, prod, prodL, q, qc, rem, remL, rem0, xi, xL, yc0,
- yL, yz,
- s = x.s == y.s ? 1 : -1,
- xc = x.c,
- yc = y.c;
-
- // Either NaN, Infinity or 0?
- if ( !xc || !xc[0] || !yc || !yc[0] ) {
-
- return new BigNumber(
-
- // Return NaN if either NaN, or both Infinity or 0.
- !x.s || !y.s || ( xc ? yc && xc[0] == yc[0] : !yc ) ? NaN :
-
- // Return ±0 if x is ±0 or y is ±Infinity, or return ±Infinity as y is ±0.
- xc && xc[0] == 0 || !yc ? s * 0 : s / 0
- );
- }
-
- q = new BigNumber(s);
- qc = q.c = [];
- e = x.e - y.e;
- s = dp + e + 1;
-
- if ( !base ) {
- base = BASE;
- e = bitFloor( x.e / LOG_BASE ) - bitFloor( y.e / LOG_BASE );
- s = s / LOG_BASE | 0;
- }
-
- // Result exponent may be one less then the current value of e.
- // The coefficients of the BigNumbers from convertBase may have trailing zeros.
- for ( i = 0; yc[i] == ( xc[i] || 0 ); i++ );
-
- if ( yc[i] > ( xc[i] || 0 ) ) e--;
-
- if ( s < 0 ) {
- qc.push(1);
- more = true;
- } else {
- xL = xc.length;
- yL = yc.length;
- i = 0;
- s += 2;
-
- // Normalise xc and yc so highest order digit of yc is >= base / 2.
-
- n = mathfloor( base / ( yc[0] + 1 ) );
-
- // Not necessary, but to handle odd bases where yc[0] == ( base / 2 ) - 1.
- // if ( n > 1 || n++ == 1 && yc[0] < base / 2 ) {
- if ( n > 1 ) {
- yc = multiply( yc, n, base );
- xc = multiply( xc, n, base );
- yL = yc.length;
- xL = xc.length;
- }
-
- xi = yL;
- rem = xc.slice( 0, yL );
- remL = rem.length;
-
- // Add zeros to make remainder as long as divisor.
- for ( ; remL < yL; rem[remL++] = 0 );
- yz = yc.slice();
- yz = [0].concat(yz);
- yc0 = yc[0];
- if ( yc[1] >= base / 2 ) yc0++;
- // Not necessary, but to prevent trial digit n > base, when using base 3.
- // else if ( base == 3 && yc0 == 1 ) yc0 = 1 + 1e-15;
-
- do {
- n = 0;
-
- // Compare divisor and remainder.
- cmp = compare( yc, rem, yL, remL );
-
- // If divisor < remainder.
- if ( cmp < 0 ) {
-
- // Calculate trial digit, n.
-
- rem0 = rem[0];
- if ( yL != remL ) rem0 = rem0 * base + ( rem[1] || 0 );
-
- // n is how many times the divisor goes into the current remainder.
- n = mathfloor( rem0 / yc0 );
-
- // Algorithm:
- // 1. product = divisor * trial digit (n)
- // 2. if product > remainder: product -= divisor, n--
- // 3. remainder -= product
- // 4. if product was < remainder at 2:
- // 5. compare new remainder and divisor
- // 6. If remainder > divisor: remainder -= divisor, n++
-
- if ( n > 1 ) {
-
- // n may be > base only when base is 3.
- if (n >= base) n = base - 1;
-
- // product = divisor * trial digit.
- prod = multiply( yc, n, base );
- prodL = prod.length;
- remL = rem.length;
-
- // Compare product and remainder.
- // If product > remainder.
- // Trial digit n too high.
- // n is 1 too high about 5% of the time, and is not known to have
- // ever been more than 1 too high.
- while ( compare( prod, rem, prodL, remL ) == 1 ) {
- n--;
-
- // Subtract divisor from product.
- subtract( prod, yL < prodL ? yz : yc, prodL, base );
- prodL = prod.length;
- cmp = 1;
- }
- } else {
-
- // n is 0 or 1, cmp is -1.
- // If n is 0, there is no need to compare yc and rem again below,
- // so change cmp to 1 to avoid it.
- // If n is 1, leave cmp as -1, so yc and rem are compared again.
- if ( n == 0 ) {
-
- // divisor < remainder, so n must be at least 1.
- cmp = n = 1;
- }
-
- // product = divisor
- prod = yc.slice();
- prodL = prod.length;
- }
-
- if ( prodL < remL ) prod = [0].concat(prod);
-
- // Subtract product from remainder.
- subtract( rem, prod, remL, base );
- remL = rem.length;
-
- // If product was < remainder.
- if ( cmp == -1 ) {
-
- // Compare divisor and new remainder.
- // If divisor < new remainder, subtract divisor from remainder.
- // Trial digit n too low.
- // n is 1 too low about 5% of the time, and very rarely 2 too low.
- while ( compare( yc, rem, yL, remL ) < 1 ) {
- n++;
-
- // Subtract divisor from remainder.
- subtract( rem, yL < remL ? yz : yc, remL, base );
- remL = rem.length;
- }
- }
- } else if ( cmp === 0 ) {
- n++;
- rem = [0];
- } // else cmp === 1 and n will be 0
-
- // Add the next digit, n, to the result array.
- qc[i++] = n;
-
- // Update the remainder.
- if ( rem[0] ) {
- rem[remL++] = xc[xi] || 0;
- } else {
- rem = [ xc[xi] ];
- remL = 1;
- }
- } while ( ( xi++ < xL || rem[0] != null ) && s-- );
-
- more = rem[0] != null;
-
- // Leading zero?
- if ( !qc[0] ) qc.splice(0, 1);
- }
-
- if ( base == BASE ) {
-
- // To calculate q.e, first get the number of digits of qc[0].
- for ( i = 1, s = qc[0]; s >= 10; s /= 10, i++ );
-
- round( q, dp + ( q.e = i + e * LOG_BASE - 1 ) + 1, rm, more );
-
- // Caller is convertBase.
- } else {
- q.e = e;
- q.r = +more;
- }
-
- return q;
- };
- })();
-
-
- /*
- * Return a string representing the value of BigNumber n in fixed-point or exponential
- * notation rounded to the specified decimal places or significant digits.
- *
- * n: a BigNumber.
- * i: the index of the last digit required (i.e. the digit that may be rounded up).
- * rm: the rounding mode.
- * id: 1 (toExponential) or 2 (toPrecision).
- */
- function format( n, i, rm, id ) {
- var c0, e, ne, len, str;
-
- if ( rm == null ) rm = ROUNDING_MODE;
- else intCheck( rm, 0, 8 );
-
- if ( !n.c ) return n.toString();
-
- c0 = n.c[0];
- ne = n.e;
-
- if ( i == null ) {
- str = coeffToString( n.c );
- str = id == 1 || id == 2 && ne <= TO_EXP_NEG
- ? toExponential( str, ne )
- : toFixedPoint( str, ne, '0' );
- } else {
- n = round( new BigNumber(n), i, rm );
-
- // n.e may have changed if the value was rounded up.
- e = n.e;
-
- str = coeffToString( n.c );
- len = str.length;
-
- // toPrecision returns exponential notation if the number of significant digits
- // specified is less than the number of digits necessary to represent the integer
- // part of the value in fixed-point notation.
-
- // Exponential notation.
- if ( id == 1 || id == 2 && ( i <= e || e <= TO_EXP_NEG ) ) {
-
- // Append zeros?
- for ( ; len < i; str += '0', len++ );
- str = toExponential( str, e );
-
- // Fixed-point notation.
- } else {
- i -= ne;
- str = toFixedPoint( str, e, '0' );
-
- // Append zeros?
- if ( e + 1 > len ) {
- if ( --i > 0 ) for ( str += '.'; i--; str += '0' );
- } else {
- i += e - len;
- if ( i > 0 ) {
- if ( e + 1 == len ) str += '.';
- for ( ; i--; str += '0' );
- }
- }
- }
- }
-
- return n.s < 0 && c0 ? '-' + str : str;
- }
-
-
- // Handle BigNumber.max and BigNumber.min.
- function maxOrMin( args, method ) {
- var m, n,
- i = 0;
-
- if ( isArray( args[0] ) ) args = args[0];
- m = new BigNumber( args[0] );
-
- for ( ; ++i < args.length; ) {
- n = new BigNumber( args[i] );
-
- // If any number is NaN, return NaN.
- if ( !n.s ) {
- m = n;
- break;
- } else if ( method.call( m, n ) ) {
- m = n;
- }
- }
-
- return m;
- }
-
-
- /*
- * Strip trailing zeros, calculate base 10 exponent and check against MIN_EXP and MAX_EXP.
- * Called by minus, plus and times.
- */
- function normalise( n, c, e ) {
- var i = 1,
- j = c.length;
-
- // Remove trailing zeros.
- for ( ; !c[--j]; c.pop() );
-
- // Calculate the base 10 exponent. First get the number of digits of c[0].
- for ( j = c[0]; j >= 10; j /= 10, i++ );
-
- // Overflow?
- if ( ( e = i + e * LOG_BASE - 1 ) > MAX_EXP ) {
-
- // Infinity.
- n.c = n.e = null;
-
- // Underflow?
- } else if ( e < MIN_EXP ) {
-
- // Zero.
- n.c = [ n.e = 0 ];
- } else {
- n.e = e;
- n.c = c;
- }
-
- return n;
- }
-
-
- // Handle values that fail the validity test in BigNumber.
- parseNumeric = (function () {
- var basePrefix = /^(-?)0([xbo])(?=\w[\w.]*$)/i,
- dotAfter = /^([^.]+)\.$/,
- dotBefore = /^\.([^.]+)$/,
- isInfinityOrNaN = /^-?(Infinity|NaN)$/,
- whitespaceOrPlus = /^\s*\+(?=[\w.])|^\s+|\s+$/g;
-
- return function ( x, str, isNum, b ) {
- var base,
- s = isNum ? str : str.replace( whitespaceOrPlus, '' );
-
- // No exception on ±Infinity or NaN.
- if ( isInfinityOrNaN.test(s) ) {
- x.s = isNaN(s) ? null : s < 0 ? -1 : 1;
- x.c = x.e = null;
- } else {
- if ( !isNum ) {
-
- // basePrefix = /^(-?)0([xbo])(?=\w[\w.]*$)/i
- s = s.replace( basePrefix, function ( m, p1, p2 ) {
- base = ( p2 = p2.toLowerCase() ) == 'x' ? 16 : p2 == 'b' ? 2 : 8;
- return !b || b == base ? p1 : m;
- });
-
- if (b) {
- base = b;
-
- // E.g. '1.' to '1', '.1' to '0.1'
- s = s.replace( dotAfter, '$1' ).replace( dotBefore, '0.$1' );
- }
-
- if ( str != s ) return new BigNumber( s, base );
- }
-
- // '[BigNumber Error] Not a number: {n}'
- // '[BigNumber Error] Not a base {b} number: {n}'
- throw Error
- ( bignumberError + 'Not a' + ( b ? ' base ' + b : '' ) + ' number: ' + str );
- }
- }
- })();
-
-
- /*
- * Round x to sd significant digits using rounding mode rm. Check for over/under-flow.
- * If r is truthy, it is known that there are more digits after the rounding digit.
- */
- function round( x, sd, rm, r ) {
- var d, i, j, k, n, ni, rd,
- xc = x.c,
- pows10 = POWS_TEN;
-
- // if x is not Infinity or NaN...
- if (xc) {
-
- // rd is the rounding digit, i.e. the digit after the digit that may be rounded up.
- // n is a base 1e14 number, the value of the element of array x.c containing rd.
- // ni is the index of n within x.c.
- // d is the number of digits of n.
- // i is the index of rd within n including leading zeros.
- // j is the actual index of rd within n (if < 0, rd is a leading zero).
- out: {
-
- // Get the number of digits of the first element of xc.
- for ( d = 1, k = xc[0]; k >= 10; k /= 10, d++ );
- i = sd - d;
-
- // If the rounding digit is in the first element of xc...
- if ( i < 0 ) {
- i += LOG_BASE;
- j = sd;
- n = xc[ ni = 0 ];
-
- // Get the rounding digit at index j of n.
- rd = n / pows10[ d - j - 1 ] % 10 | 0;
- } else {
- ni = mathceil( ( i + 1 ) / LOG_BASE );
-
- if ( ni >= xc.length ) {
-
- if (r) {
-
- // Needed by sqrt.
- for ( ; xc.length <= ni; xc.push(0) );
- n = rd = 0;
- d = 1;
- i %= LOG_BASE;
- j = i - LOG_BASE + 1;
- } else {
- break out;
- }
- } else {
- n = k = xc[ni];
-
- // Get the number of digits of n.
- for ( d = 1; k >= 10; k /= 10, d++ );
-
- // Get the index of rd within n.
- i %= LOG_BASE;
-
- // Get the index of rd within n, adjusted for leading zeros.
- // The number of leading zeros of n is given by LOG_BASE - d.
- j = i - LOG_BASE + d;
-
- // Get the rounding digit at index j of n.
- rd = j < 0 ? 0 : n / pows10[ d - j - 1 ] % 10 | 0;
- }
- }
-
- r = r || sd < 0 ||
-
- // Are there any non-zero digits after the rounding digit?
- // The expression n % pows10[ d - j - 1 ] returns all digits of n to the right
- // of the digit at j, e.g. if n is 908714 and j is 2, the expression gives 714.
- xc[ni + 1] != null || ( j < 0 ? n : n % pows10[ d - j - 1 ] );
-
- r = rm < 4
- ? ( rd || r ) && ( rm == 0 || rm == ( x.s < 0 ? 3 : 2 ) )
- : rd > 5 || rd == 5 && ( rm == 4 || r || rm == 6 &&
-
- // Check whether the digit to the left of the rounding digit is odd.
- ( ( i > 0 ? j > 0 ? n / pows10[ d - j ] : 0 : xc[ni - 1] ) % 10 ) & 1 ||
- rm == ( x.s < 0 ? 8 : 7 ) );
-
- if ( sd < 1 || !xc[0] ) {
- xc.length = 0;
-
- if (r) {
-
- // Convert sd to decimal places.
- sd -= x.e + 1;
-
- // 1, 0.1, 0.01, 0.001, 0.0001 etc.
- xc[0] = pows10[ ( LOG_BASE - sd % LOG_BASE ) % LOG_BASE ];
- x.e = -sd || 0;
- } else {
-
- // Zero.
- xc[0] = x.e = 0;
- }
-
- return x;
- }
-
- // Remove excess digits.
- if ( i == 0 ) {
- xc.length = ni;
- k = 1;
- ni--;
- } else {
- xc.length = ni + 1;
- k = pows10[ LOG_BASE - i ];
-
- // E.g. 56700 becomes 56000 if 7 is the rounding digit.
- // j > 0 means i > number of leading zeros of n.
- xc[ni] = j > 0 ? mathfloor( n / pows10[ d - j ] % pows10[j] ) * k : 0;
- }
-
- // Round up?
- if (r) {
-
- for ( ; ; ) {
-
- // If the digit to be rounded up is in the first element of xc...
- if ( ni == 0 ) {
-
- // i will be the length of xc[0] before k is added.
- for ( i = 1, j = xc[0]; j >= 10; j /= 10, i++ );
- j = xc[0] += k;
- for ( k = 1; j >= 10; j /= 10, k++ );
-
- // if i != k the length has increased.
- if ( i != k ) {
- x.e++;
- if ( xc[0] == BASE ) xc[0] = 1;
- }
-
- break;
- } else {
- xc[ni] += k;
- if ( xc[ni] != BASE ) break;
- xc[ni--] = 0;
- k = 1;
- }
- }
- }
-
- // Remove trailing zeros.
- for ( i = xc.length; xc[--i] === 0; xc.pop() );
- }
-
- // Overflow? Infinity.
- if ( x.e > MAX_EXP ) {
- x.c = x.e = null;
-
- // Underflow? Zero.
- } else if ( x.e < MIN_EXP ) {
- x.c = [ x.e = 0 ];
- }
- }
-
- return x;
- }
-
-
- // PROTOTYPE/INSTANCE METHODS
-
-
- /*
- * Return a new BigNumber whose value is the absolute value of this BigNumber.
- */
- P.absoluteValue = P.abs = function () {
- var x = new BigNumber(this);
- if ( x.s < 0 ) x.s = 1;
- return x;
- };
-
-
- /*
- * Return
- * 1 if the value of this BigNumber is greater than the value of BigNumber(y, b),
- * -1 if the value of this BigNumber is less than the value of BigNumber(y, b),
- * 0 if they have the same value,
- * or null if the value of either is NaN.
- */
- P.comparedTo = function ( y, b ) {
- return compare( this, new BigNumber( y, b ) );
- };
-
-
- /*
- * If dp is undefined or null or true or false, return the number of decimal places of the
- * value of this BigNumber, or null if the value of this BigNumber is ±Infinity or NaN.
- *
- * Otherwise, if dp is a number, return a new BigNumber whose value is the value of this
- * BigNumber rounded to a maximum of dp decimal places using rounding mode rm, or
- * ROUNDING_MODE if rm is omitted.
- *
- * [dp] {number} Decimal places: integer, 0 to MAX inclusive.
- * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
- *
- * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {dp|rm}'
- */
- P.decimalPlaces = P.dp = function ( dp, rm ) {
- var c, n, v,
- x = this;
-
- if ( dp != null ) {
- intCheck( dp, 0, MAX );
- if ( rm == null ) rm = ROUNDING_MODE;
- else intCheck( rm, 0, 8 );
-
- return round( new BigNumber(x), dp + x.e + 1, rm );
- }
-
- if ( !( c = x.c ) ) return null;
- n = ( ( v = c.length - 1 ) - bitFloor( this.e / LOG_BASE ) ) * LOG_BASE;
-
- // Subtract the number of trailing zeros of the last number.
- if ( v = c[v] ) for ( ; v % 10 == 0; v /= 10, n-- );
- if ( n < 0 ) n = 0;
-
- return n;
- };
-
-
- /*
- * n / 0 = I
- * n / N = N
- * n / I = 0
- * 0 / n = 0
- * 0 / 0 = N
- * 0 / N = N
- * 0 / I = 0
- * N / n = N
- * N / 0 = N
- * N / N = N
- * N / I = N
- * I / n = I
- * I / 0 = I
- * I / N = N
- * I / I = N
- *
- * Return a new BigNumber whose value is the value of this BigNumber divided by the value of
- * BigNumber(y, b), rounded according to DECIMAL_PLACES and ROUNDING_MODE.
- */
- P.dividedBy = P.div = function ( y, b ) {
- return div( this, new BigNumber( y, b ), DECIMAL_PLACES, ROUNDING_MODE );
- };
-
-
- /*
- * Return a new BigNumber whose value is the integer part of dividing the value of this
- * BigNumber by the value of BigNumber(y, b).
- */
- P.dividedToIntegerBy = P.idiv = function ( y, b ) {
- return div( this, new BigNumber( y, b ), 0, 1 );
- };
-
-
- /*
- * Return true if the value of this BigNumber is equal to the value of BigNumber(y, b),
- * otherwise return false.
- */
- P.isEqualTo = P.eq = function ( y, b ) {
- return compare( this, new BigNumber( y, b ) ) === 0;
- };
-
-
- /*
- * Return a new BigNumber whose value is the value of this BigNumber rounded to an integer
- * using rounding mode rm, or ROUNDING_MODE if rm is omitted.
- *
- * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
- *
- * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {rm}'
- */
- P.integerValue = function (rm) {
- var n = new BigNumber(this);
- if ( rm == null ) rm = ROUNDING_MODE;
- else intCheck( rm, 0, 8 );
- return round( n, n.e + 1, rm );
- };
-
-
- /*
- * Return true if the value of this BigNumber is greater than the value of BigNumber(y, b),
- * otherwise return false.
- */
- P.isGreaterThan = P.gt = function ( y, b ) {
- return compare( this, new BigNumber( y, b ) ) > 0;
- };
-
-
- /*
- * Return true if the value of this BigNumber is greater than or equal to the value of
- * BigNumber(y, b), otherwise return false.
- */
- P.isGreaterThanOrEqualTo = P.gte = function ( y, b ) {
- return ( b = compare( this, new BigNumber( y, b ) ) ) === 1 || b === 0;
-
- };
-
-
- /*
- * Return true if the value of this BigNumber is a finite number, otherwise return false.
- */
- P.isFinite = function () {
- return !!this.c;
- };
-
-
- /*
- * Return true if the value of this BigNumber is an integer, otherwise return false.
- */
- P.isInteger = function () {
- return !!this.c && bitFloor( this.e / LOG_BASE ) > this.c.length - 2;
- };
-
-
- /*
- * Return true if the value of this BigNumber is NaN, otherwise return false.
- */
- P.isNaN = function () {
- return !this.s;
- };
-
-
- /*
- * Return true if the value of this BigNumber is negative, otherwise return false.
- */
- P.isNegative = function () {
- return this.s < 0;
- };
-
-
- /*
- * Return true if the value of this BigNumber is positive, otherwise return false.
- */
- P.isPositive = function () {
- return this.s > 0;
- };
-
-
- /*
- * Return true if the value of this BigNumber is 0 or -0, otherwise return false.
- */
- P.isZero = function () {
- return !!this.c && this.c[0] == 0;
- };
-
-
- /*
- * Return true if the value of this BigNumber is less than the value of BigNumber(y, b),
- * otherwise return false.
- */
- P.isLessThan = P.lt = function ( y, b ) {
- return compare( this, new BigNumber( y, b ) ) < 0;
- };
-
-
- /*
- * Return true if the value of this BigNumber is less than or equal to the value of
- * BigNumber(y, b), otherwise return false.
- */
- P.isLessThanOrEqualTo = P.lte = function ( y, b ) {
- return ( b = compare( this, new BigNumber( y, b ) ) ) === -1 || b === 0;
- };
-
-
- /*
- * n - 0 = n
- * n - N = N
- * n - I = -I
- * 0 - n = -n
- * 0 - 0 = 0
- * 0 - N = N
- * 0 - I = -I
- * N - n = N
- * N - 0 = N
- * N - N = N
- * N - I = N
- * I - n = I
- * I - 0 = I
- * I - N = N
- * I - I = N
- *
- * Return a new BigNumber whose value is the value of this BigNumber minus the value of
- * BigNumber(y, b).
- */
- P.minus = function ( y, b ) {
- var i, j, t, xLTy,
- x = this,
- a = x.s;
-
- y = new BigNumber( y, b );
- b = y.s;
-
- // Either NaN?
- if ( !a || !b ) return new BigNumber(NaN);
-
- // Signs differ?
- if ( a != b ) {
- y.s = -b;
- return x.plus(y);
- }
-
- var xe = x.e / LOG_BASE,
- ye = y.e / LOG_BASE,
- xc = x.c,
- yc = y.c;
-
- if ( !xe || !ye ) {
-
- // Either Infinity?
- if ( !xc || !yc ) return xc ? ( y.s = -b, y ) : new BigNumber( yc ? x : NaN );
-
- // Either zero?
- if ( !xc[0] || !yc[0] ) {
-
- // Return y if y is non-zero, x if x is non-zero, or zero if both are zero.
- return yc[0] ? ( y.s = -b, y ) : new BigNumber( xc[0] ? x :
-
- // IEEE 754 (2008) 6.3: n - n = -0 when rounding to -Infinity
- ROUNDING_MODE == 3 ? -0 : 0 );
- }
- }
-
- xe = bitFloor(xe);
- ye = bitFloor(ye);
- xc = xc.slice();
-
- // Determine which is the bigger number.
- if ( a = xe - ye ) {
-
- if ( xLTy = a < 0 ) {
- a = -a;
- t = xc;
- } else {
- ye = xe;
- t = yc;
- }
-
- t.reverse();
-
- // Prepend zeros to equalise exponents.
- for ( b = a; b--; t.push(0) );
- t.reverse();
- } else {
-
- // Exponents equal. Check digit by digit.
- j = ( xLTy = ( a = xc.length ) < ( b = yc.length ) ) ? a : b;
-
- for ( a = b = 0; b < j; b++ ) {
-
- if ( xc[b] != yc[b] ) {
- xLTy = xc[b] < yc[b];
- break;
- }
- }
- }
-
- // x < y? Point xc to the array of the bigger number.
- if (xLTy) t = xc, xc = yc, yc = t, y.s = -y.s;
-
- b = ( j = yc.length ) - ( i = xc.length );
-
- // Append zeros to xc if shorter.
- // No need to add zeros to yc if shorter as subtract only needs to start at yc.length.
- if ( b > 0 ) for ( ; b--; xc[i++] = 0 );
- b = BASE - 1;
-
- // Subtract yc from xc.
- for ( ; j > a; ) {
-
- if ( xc[--j] < yc[j] ) {
- for ( i = j; i && !xc[--i]; xc[i] = b );
- --xc[i];
- xc[j] += BASE;
- }
-
- xc[j] -= yc[j];
- }
-
- // Remove leading zeros and adjust exponent accordingly.
- for ( ; xc[0] == 0; xc.splice(0, 1), --ye );
-
- // Zero?
- if ( !xc[0] ) {
-
- // Following IEEE 754 (2008) 6.3,
- // n - n = +0 but n - n = -0 when rounding towards -Infinity.
- y.s = ROUNDING_MODE == 3 ? -1 : 1;
- y.c = [ y.e = 0 ];
- return y;
- }
-
- // No need to check for Infinity as +x - +y != Infinity && -x - -y != Infinity
- // for finite x and y.
- return normalise( y, xc, ye );
- };
-
-
- /*
- * n % 0 = N
- * n % N = N
- * n % I = n
- * 0 % n = 0
- * -0 % n = -0
- * 0 % 0 = N
- * 0 % N = N
- * 0 % I = 0
- * N % n = N
- * N % 0 = N
- * N % N = N
- * N % I = N
- * I % n = N
- * I % 0 = N
- * I % N = N
- * I % I = N
- *
- * Return a new BigNumber whose value is the value of this BigNumber modulo the value of
- * BigNumber(y, b). The result depends on the value of MODULO_MODE.
- */
- P.modulo = P.mod = function ( y, b ) {
- var q, s,
- x = this;
-
- y = new BigNumber( y, b );
-
- // Return NaN if x is Infinity or NaN, or y is NaN or zero.
- if ( !x.c || !y.s || y.c && !y.c[0] ) {
- return new BigNumber(NaN);
-
- // Return x if y is Infinity or x is zero.
- } else if ( !y.c || x.c && !x.c[0] ) {
- return new BigNumber(x);
- }
-
- if ( MODULO_MODE == 9 ) {
-
- // Euclidian division: q = sign(y) * floor(x / abs(y))
- // r = x - qy where 0 <= r < abs(y)
- s = y.s;
- y.s = 1;
- q = div( x, y, 0, 3 );
- y.s = s;
- q.s *= s;
- } else {
- q = div( x, y, 0, MODULO_MODE );
- }
-
- return x.minus( q.times(y) );
- };
-
-
- /*
- * n * 0 = 0
- * n * N = N
- * n * I = I
- * 0 * n = 0
- * 0 * 0 = 0
- * 0 * N = N
- * 0 * I = N
- * N * n = N
- * N * 0 = N
- * N * N = N
- * N * I = N
- * I * n = I
- * I * 0 = N
- * I * N = N
- * I * I = I
- *
- * Return a new BigNumber whose value is the value of this BigNumber multiplied by the value
- * of BigNumber(y, b).
- */
- P.multipliedBy = P.times = function ( y, b ) {
- var c, e, i, j, k, m, xcL, xlo, xhi, ycL, ylo, yhi, zc,
- base, sqrtBase,
- x = this,
- xc = x.c,
- yc = ( y = new BigNumber( y, b ) ).c;
-
- // Either NaN, ±Infinity or ±0?
- if ( !xc || !yc || !xc[0] || !yc[0] ) {
-
- // Return NaN if either is NaN, or one is 0 and the other is Infinity.
- if ( !x.s || !y.s || xc && !xc[0] && !yc || yc && !yc[0] && !xc ) {
- y.c = y.e = y.s = null;
- } else {
- y.s *= x.s;
-
- // Return ±Infinity if either is ±Infinity.
- if ( !xc || !yc ) {
- y.c = y.e = null;
-
- // Return ±0 if either is ±0.
- } else {
- y.c = [0];
- y.e = 0;
- }
- }
-
- return y;
- }
-
- e = bitFloor( x.e / LOG_BASE ) + bitFloor( y.e / LOG_BASE );
- y.s *= x.s;
- xcL = xc.length;
- ycL = yc.length;
-
- // Ensure xc points to longer array and xcL to its length.
- if ( xcL < ycL ) zc = xc, xc = yc, yc = zc, i = xcL, xcL = ycL, ycL = i;
-
- // Initialise the result array with zeros.
- for ( i = xcL + ycL, zc = []; i--; zc.push(0) );
-
- base = BASE;
- sqrtBase = SQRT_BASE;
-
- for ( i = ycL; --i >= 0; ) {
- c = 0;
- ylo = yc[i] % sqrtBase;
- yhi = yc[i] / sqrtBase | 0;
-
- for ( k = xcL, j = i + k; j > i; ) {
- xlo = xc[--k] % sqrtBase;
- xhi = xc[k] / sqrtBase | 0;
- m = yhi * xlo + xhi * ylo;
- xlo = ylo * xlo + ( ( m % sqrtBase ) * sqrtBase ) + zc[j] + c;
- c = ( xlo / base | 0 ) + ( m / sqrtBase | 0 ) + yhi * xhi;
- zc[j--] = xlo % base;
- }
-
- zc[j] = c;
- }
-
- if (c) {
- ++e;
- } else {
- zc.splice(0, 1);
- }
-
- return normalise( y, zc, e );
- };
-
-
- /*
- * Return a new BigNumber whose value is the value of this BigNumber negated,
- * i.e. multiplied by -1.
- */
- P.negated = function () {
- var x = new BigNumber(this);
- x.s = -x.s || null;
- return x;
- };
-
-
- /*
- * n + 0 = n
- * n + N = N
- * n + I = I
- * 0 + n = n
- * 0 + 0 = 0
- * 0 + N = N
- * 0 + I = I
- * N + n = N
- * N + 0 = N
- * N + N = N
- * N + I = N
- * I + n = I
- * I + 0 = I
- * I + N = N
- * I + I = I
- *
- * Return a new BigNumber whose value is the value of this BigNumber plus the value of
- * BigNumber(y, b).
- */
- P.plus = function ( y, b ) {
- var t,
- x = this,
- a = x.s;
-
- y = new BigNumber( y, b );
- b = y.s;
-
- // Either NaN?
- if ( !a || !b ) return new BigNumber(NaN);
-
- // Signs differ?
- if ( a != b ) {
- y.s = -b;
- return x.minus(y);
- }
-
- var xe = x.e / LOG_BASE,
- ye = y.e / LOG_BASE,
- xc = x.c,
- yc = y.c;
-
- if ( !xe || !ye ) {
-
- // Return ±Infinity if either ±Infinity.
- if ( !xc || !yc ) return new BigNumber( a / 0 );
-
- // Either zero?
- // Return y if y is non-zero, x if x is non-zero, or zero if both are zero.
- if ( !xc[0] || !yc[0] ) return yc[0] ? y : new BigNumber( xc[0] ? x : a * 0 );
- }
-
- xe = bitFloor(xe);
- ye = bitFloor(ye);
- xc = xc.slice();
-
- // Prepend zeros to equalise exponents. Faster to use reverse then do unshifts.
- if ( a = xe - ye ) {
- if ( a > 0 ) {
- ye = xe;
- t = yc;
- } else {
- a = -a;
- t = xc;
- }
-
- t.reverse();
- for ( ; a--; t.push(0) );
- t.reverse();
- }
-
- a = xc.length;
- b = yc.length;
-
- // Point xc to the longer array, and b to the shorter length.
- if ( a - b < 0 ) t = yc, yc = xc, xc = t, b = a;
-
- // Only start adding at yc.length - 1 as the further digits of xc can be ignored.
- for ( a = 0; b; ) {
- a = ( xc[--b] = xc[b] + yc[b] + a ) / BASE | 0;
- xc[b] = BASE === xc[b] ? 0 : xc[b] % BASE;
- }
-
- if (a) {
- xc = [a].concat(xc);
- ++ye;
- }
-
- // No need to check for zero, as +x + +y != 0 && -x + -y != 0
- // ye = MAX_EXP + 1 possible
- return normalise( y, xc, ye );
- };
-
-
- /*
- * If sd is undefined or null or true or false, return the number of significant digits of
- * the value of this BigNumber, or null if the value of this BigNumber is ±Infinity or NaN.
- * If sd is true include integer-part trailing zeros in the count.
- *
- * Otherwise, if sd is a number, return a new BigNumber whose value is the value of this
- * BigNumber rounded to a maximum of sd significant digits using rounding mode rm, or
- * ROUNDING_MODE if rm is omitted.
- *
- * sd {number|boolean} number: significant digits: integer, 1 to MAX inclusive.
- * boolean: whether to count integer-part trailing zeros: true or false.
- * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
- *
- * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {sd|rm}'
- */
- P.precision = P.sd = function ( sd, rm ) {
- var c, n, v,
- x = this;
-
- if ( sd != null && sd !== !!sd ) {
- intCheck( sd, 1, MAX );
- if ( rm == null ) rm = ROUNDING_MODE;
- else intCheck( rm, 0, 8 );
-
- return round( new BigNumber(x), sd, rm );
- }
-
- if ( !( c = x.c ) ) return null;
- v = c.length - 1;
- n = v * LOG_BASE + 1;
-
- if ( v = c[v] ) {
-
- // Subtract the number of trailing zeros of the last element.
- for ( ; v % 10 == 0; v /= 10, n-- );
-
- // Add the number of digits of the first element.
- for ( v = c[0]; v >= 10; v /= 10, n++ );
- }
-
- if ( sd && x.e + 1 > n ) n = x.e + 1;
-
- return n;
- };
-
-
- /*
- * Return a new BigNumber whose value is the value of this BigNumber shifted by k places
- * (powers of 10). Shift to the right if n > 0, and to the left if n < 0.
- *
- * k {number} Integer, -MAX_SAFE_INTEGER to MAX_SAFE_INTEGER inclusive.
- *
- * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {k}'
- */
- P.shiftedBy = function (k) {
- intCheck( k, -MAX_SAFE_INTEGER, MAX_SAFE_INTEGER );
- return this.times( '1e' + k );
- };
-
-
- /*
- * sqrt(-n) = N
- * sqrt( N) = N
- * sqrt(-I) = N
- * sqrt( I) = I
- * sqrt( 0) = 0
- * sqrt(-0) = -0
- *
- * Return a new BigNumber whose value is the square root of the value of this BigNumber,
- * rounded according to DECIMAL_PLACES and ROUNDING_MODE.
- */
- P.squareRoot = P.sqrt = function () {
- var m, n, r, rep, t,
- x = this,
- c = x.c,
- s = x.s,
- e = x.e,
- dp = DECIMAL_PLACES + 4,
- half = new BigNumber('0.5');
-
- // Negative/NaN/Infinity/zero?
- if ( s !== 1 || !c || !c[0] ) {
- return new BigNumber( !s || s < 0 && ( !c || c[0] ) ? NaN : c ? x : 1 / 0 );
- }
-
- // Initial estimate.
- s = Math.sqrt( +x );
-
- // Math.sqrt underflow/overflow?
- // Pass x to Math.sqrt as integer, then adjust the exponent of the result.
- if ( s == 0 || s == 1 / 0 ) {
- n = coeffToString(c);
- if ( ( n.length + e ) % 2 == 0 ) n += '0';
- s = Math.sqrt(n);
- e = bitFloor( ( e + 1 ) / 2 ) - ( e < 0 || e % 2 );
-
- if ( s == 1 / 0 ) {
- n = '1e' + e;
- } else {
- n = s.toExponential();
- n = n.slice( 0, n.indexOf('e') + 1 ) + e;
- }
-
- r = new BigNumber(n);
- } else {
- r = new BigNumber( s + '' );
- }
-
- // Check for zero.
- // r could be zero if MIN_EXP is changed after the this value was created.
- // This would cause a division by zero (x/t) and hence Infinity below, which would cause
- // coeffToString to throw.
- if ( r.c[0] ) {
- e = r.e;
- s = e + dp;
- if ( s < 3 ) s = 0;
-
- // Newton-Raphson iteration.
- for ( ; ; ) {
- t = r;
- r = half.times( t.plus( div( x, t, dp, 1 ) ) );
-
- if ( coeffToString( t.c ).slice( 0, s ) === ( n =
- coeffToString( r.c ) ).slice( 0, s ) ) {
-
- // The exponent of r may here be one less than the final result exponent,
- // e.g 0.0009999 (e-4) --> 0.001 (e-3), so adjust s so the rounding digits
- // are indexed correctly.
- if ( r.e < e ) --s;
- n = n.slice( s - 3, s + 1 );
-
- // The 4th rounding digit may be in error by -1 so if the 4 rounding digits
- // are 9999 or 4999 (i.e. approaching a rounding boundary) continue the
- // iteration.
- if ( n == '9999' || !rep && n == '4999' ) {
-
- // On the first iteration only, check to see if rounding up gives the
- // exact result as the nines may infinitely repeat.
- if ( !rep ) {
- round( t, t.e + DECIMAL_PLACES + 2, 0 );
-
- if ( t.times(t).eq(x) ) {
- r = t;
- break;
- }
- }
-
- dp += 4;
- s += 4;
- rep = 1;
- } else {
-
- // If rounding digits are null, 0{0,4} or 50{0,3}, check for exact
- // result. If not, then there are further digits and m will be truthy.
- if ( !+n || !+n.slice(1) && n.charAt(0) == '5' ) {
-
- // Truncate to the first rounding digit.
- round( r, r.e + DECIMAL_PLACES + 2, 1 );
- m = !r.times(r).eq(x);
- }
-
- break;
- }
- }
- }
- }
-
- return round( r, r.e + DECIMAL_PLACES + 1, ROUNDING_MODE, m );
- };
-
-
- /*
- * Return a string representing the value of this BigNumber in exponential notation and
- * rounded using ROUNDING_MODE to dp fixed decimal places.
- *
- * [dp] {number} Decimal places. Integer, 0 to MAX inclusive.
- * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
- *
- * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {dp|rm}'
- */
- P.toExponential = function ( dp, rm ) {
- if ( dp != null ) {
- intCheck( dp, 0, MAX );
- dp++;
- }
- return format( this, dp, rm, 1 );
- };
-
-
- /*
- * Return a string representing the value of this BigNumber in fixed-point notation rounding
- * to dp fixed decimal places using rounding mode rm, or ROUNDING_MODE if rm is omitted.
- *
- * Note: as with JavaScript's number type, (-0).toFixed(0) is '0',
- * but e.g. (-0.00001).toFixed(0) is '-0'.
- *
- * [dp] {number} Decimal places. Integer, 0 to MAX inclusive.
- * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
- *
- * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {dp|rm}'
- */
- P.toFixed = function ( dp, rm ) {
- if ( dp != null ) {
- intCheck( dp, 0, MAX );
- dp = dp + this.e + 1;
- }
- return format( this, dp, rm );
- };
-
-
- /*
- * Return a string representing the value of this BigNumber in fixed-point notation rounded
- * using rm or ROUNDING_MODE to dp decimal places, and formatted according to the properties
- * of the FORMAT object (see BigNumber.set).
- *
- * FORMAT = {
- * decimalSeparator : '.',
- * groupSeparator : ',',
- * groupSize : 3,
- * secondaryGroupSize : 0,
- * fractionGroupSeparator : '\xA0', // non-breaking space
- * fractionGroupSize : 0
- * };
- *
- * [dp] {number} Decimal places. Integer, 0 to MAX inclusive.
- * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
- *
- * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {dp|rm}'
- */
- P.toFormat = function ( dp, rm ) {
- var str = this.toFixed( dp, rm );
-
- if ( this.c ) {
- var i,
- arr = str.split('.'),
- g1 = +FORMAT.groupSize,
- g2 = +FORMAT.secondaryGroupSize,
- groupSeparator = FORMAT.groupSeparator,
- intPart = arr[0],
- fractionPart = arr[1],
- isNeg = this.s < 0,
- intDigits = isNeg ? intPart.slice(1) : intPart,
- len = intDigits.length;
-
- if (g2) i = g1, g1 = g2, g2 = i, len -= i;
-
- if ( g1 > 0 && len > 0 ) {
- i = len % g1 || g1;
- intPart = intDigits.substr( 0, i );
-
- for ( ; i < len; i += g1 ) {
- intPart += groupSeparator + intDigits.substr( i, g1 );
- }
-
- if ( g2 > 0 ) intPart += groupSeparator + intDigits.slice(i);
- if (isNeg) intPart = '-' + intPart;
- }
-
- str = fractionPart
- ? intPart + FORMAT.decimalSeparator + ( ( g2 = +FORMAT.fractionGroupSize )
- ? fractionPart.replace( new RegExp( '\\d{' + g2 + '}\\B', 'g' ),
- '$&' + FORMAT.fractionGroupSeparator )
- : fractionPart )
- : intPart;
- }
-
- return str;
- };
-
-
- /*
- * Return a string array representing the value of this BigNumber as a simple fraction with
- * an integer numerator and an integer denominator. The denominator will be a positive
- * non-zero value less than or equal to the specified maximum denominator. If a maximum
- * denominator is not specified, the denominator will be the lowest value necessary to
- * represent the number exactly.
- *
- * [md] {number|string|BigNumber} Integer >= 1 and < Infinity. The maximum denominator.
- *
- * '[BigNumber Error] Argument {not an integer|out of range} : {md}'
- */
- P.toFraction = function (md) {
- var arr, d, d0, d1, d2, e, exp, n, n0, n1, q, s,
- x = this,
- xc = x.c;
-
- if ( md != null ) {
- n = new BigNumber(md);
-
- if ( !n.isInteger() || n.lt(ONE) ) {
- throw Error
- ( bignumberError + 'Argument ' +
- ( n.isInteger() ? 'out of range: ' : 'not an integer: ' ) + md );
- }
- }
-
- if ( !xc ) return x.toString();
-
- d = new BigNumber(ONE);
- n1 = d0 = new BigNumber(ONE);
- d1 = n0 = new BigNumber(ONE);
- s = coeffToString(xc);
-
- // Determine initial denominator.
- // d is a power of 10 and the minimum max denominator that specifies the value exactly.
- e = d.e = s.length - x.e - 1;
- d.c[0] = POWS_TEN[ ( exp = e % LOG_BASE ) < 0 ? LOG_BASE + exp : exp ];
- md = !md || n.comparedTo(d) > 0 ? ( e > 0 ? d : n1 ) : n;
-
- exp = MAX_EXP;
- MAX_EXP = 1 / 0;
- n = new BigNumber(s);
-
- // n0 = d1 = 0
- n0.c[0] = 0;
-
- for ( ; ; ) {
- q = div( n, d, 0, 1 );
- d2 = d0.plus( q.times(d1) );
- if ( d2.comparedTo(md) == 1 ) break;
- d0 = d1;
- d1 = d2;
- n1 = n0.plus( q.times( d2 = n1 ) );
- n0 = d2;
- d = n.minus( q.times( d2 = d ) );
- n = d2;
- }
-
- d2 = div( md.minus(d0), d1, 0, 1 );
- n0 = n0.plus( d2.times(n1) );
- d0 = d0.plus( d2.times(d1) );
- n0.s = n1.s = x.s;
- e *= 2;
-
- // Determine which fraction is closer to x, n0/d0 or n1/d1
- arr = div( n1, d1, e, ROUNDING_MODE ).minus(x).abs().comparedTo(
- div( n0, d0, e, ROUNDING_MODE ).minus(x).abs() ) < 1
- ? [ n1.toString(), d1.toString() ]
- : [ n0.toString(), d0.toString() ];
-
- MAX_EXP = exp;
- return arr;
- };
-
-
- /*
- * Return the value of this BigNumber converted to a number primitive.
- */
- P.toNumber = function () {
- return +this;
- };
-
-
- /*
- * Return a BigNumber whose value is the value of this BigNumber exponentiated by n.
- *
- * If m is present, return the result modulo m.
- * If n is negative round according to DECIMAL_PLACES and ROUNDING_MODE.
- * If POW_PRECISION is non-zero and m is not present, round to POW_PRECISION using ROUNDING_MODE.
- *
- * The modular power operation works efficiently when x, n, and m are positive integers,
- * otherwise it is equivalent to calculating x.exponentiatedBy(n).modulo(m) with a POW_PRECISION of 0.
- *
- * n {number} Integer, -MAX_SAFE_INTEGER to MAX_SAFE_INTEGER inclusive.
- * [m] {number|string|BigNumber} The modulus.
- *
- * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {n}'
- *
- * Performs 54 loop iterations for n of 9007199254740991.
- */
- P.exponentiatedBy = P.pow = function ( n, m ) {
- var i, k, y, z,
- x = this;
-
- intCheck( n, -MAX_SAFE_INTEGER, MAX_SAFE_INTEGER );
- if ( m != null ) m = new BigNumber(m);
-
- if (m) {
- if ( n > 1 && x.gt(ONE) && x.isInteger() && m.gt(ONE) && m.isInteger() ) {
- x = x.mod(m);
- } else {
- z = m;
-
- // Nullify m so only a single mod operation is performed at the end.
- m = null;
- }
- } else if (POW_PRECISION) {
-
- // Truncating each coefficient array to a length of k after each multiplication
- // equates to truncating significant digits to POW_PRECISION + [28, 41],
- // i.e. there will be a minimum of 28 guard digits retained.
- //k = mathceil( POW_PRECISION / LOG_BASE + 1.5 ); // gives [9, 21] guard digits.
- k = mathceil( POW_PRECISION / LOG_BASE + 2 );
- }
-
- y = new BigNumber(ONE);
-
- for ( i = mathfloor( n < 0 ? -n : n ); ; ) {
- if ( i % 2 ) {
- y = y.times(x);
- if ( !y.c ) break;
- if (k) {
- if ( y.c.length > k ) y.c.length = k;
- } else if (m) {
- y = y.mod(m);
- }
- }
-
- i = mathfloor( i / 2 );
- if ( !i ) break;
- x = x.times(x);
- if (k) {
- if ( x.c && x.c.length > k ) x.c.length = k;
- } else if (m) {
- x = x.mod(m);
- }
- }
-
- if (m) return y;
- if ( n < 0 ) y = ONE.div(y);
-
- return z ? y.mod(z) : k ? round( y, POW_PRECISION, ROUNDING_MODE ) : y;
- };
-
-
- /*
- * Return a string representing the value of this BigNumber rounded to sd significant digits
- * using rounding mode rm or ROUNDING_MODE. If sd is less than the number of digits
- * necessary to represent the integer part of the value in fixed-point notation, then use
- * exponential notation.
- *
- * [sd] {number} Significant digits. Integer, 1 to MAX inclusive.
- * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
- *
- * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {sd|rm}'
- */
- P.toPrecision = function ( sd, rm ) {
- if ( sd != null ) intCheck( sd, 1, MAX );
- return format( this, sd, rm, 2 );
- };
-
-
- /*
- * Return a string representing the value of this BigNumber in base b, or base 10 if b is
- * omitted. If a base is specified, including base 10, round according to DECIMAL_PLACES and
- * ROUNDING_MODE. If a base is not specified, and this BigNumber has a positive exponent
- * that is equal to or greater than TO_EXP_POS, or a negative exponent equal to or less than
- * TO_EXP_NEG, return exponential notation.
- *
- * [b] {number} Integer, 2 to ALPHABET.length inclusive.
- *
- * '[BigNumber Error] Base {not a primitive number|not an integer|out of range}: {b}'
- */
- P.toString = function (b) {
- var str,
- n = this,
- s = n.s,
- e = n.e;
-
- // Infinity or NaN?
- if ( e === null ) {
-
- if (s) {
- str = 'Infinity';
- if ( s < 0 ) str = '-' + str;
- } else {
- str = 'NaN';
- }
- } else {
- str = coeffToString( n.c );
-
- if ( b == null ) {
- str = e <= TO_EXP_NEG || e >= TO_EXP_POS
- ? toExponential( str, e )
- : toFixedPoint( str, e, '0' );
- } else {
- intCheck( b, 2, ALPHABET.length, 'Base' );
- str = convertBase( toFixedPoint( str, e, '0' ), 10, b, s, true );
- }
-
- if ( s < 0 && n.c[0] ) str = '-' + str;
- }
-
- return str;
- };
-
-
- /*
- * Return as toString, but do not accept a base argument, and include the minus sign for
- * negative zero.
- */
- P.valueOf = P.toJSON = function () {
- var str,
- n = this,
- e = n.e;
-
- if ( e === null ) return n.toString();
-
- str = coeffToString( n.c );
-
- str = e <= TO_EXP_NEG || e >= TO_EXP_POS
- ? toExponential( str, e )
- : toFixedPoint( str, e, '0' );
-
- return n.s < 0 ? '-' + str : str;
- };
-
-
- P._isBigNumber = true;
-
- if ( configObject != null ) BigNumber.set(configObject);
-
- return BigNumber;
-}
-
-
-// PRIVATE HELPER FUNCTIONS
-
-
-function bitFloor(n) {
- var i = n | 0;
- return n > 0 || n === i ? i : i - 1;
-}
-
-
-// Return a coefficient array as a string of base 10 digits.
-function coeffToString(a) {
- var s, z,
- i = 1,
- j = a.length,
- r = a[0] + '';
-
- for ( ; i < j; ) {
- s = a[i++] + '';
- z = LOG_BASE - s.length;
- for ( ; z--; s = '0' + s );
- r += s;
- }
-
- // Determine trailing zeros.
- for ( j = r.length; r.charCodeAt(--j) === 48; );
- return r.slice( 0, j + 1 || 1 );
-}
-
-
-// Compare the value of BigNumbers x and y.
-function compare( x, y ) {
- var a, b,
- xc = x.c,
- yc = y.c,
- i = x.s,
- j = y.s,
- k = x.e,
- l = y.e;
-
- // Either NaN?
- if ( !i || !j ) return null;
-
- a = xc && !xc[0];
- b = yc && !yc[0];
-
- // Either zero?
- if ( a || b ) return a ? b ? 0 : -j : i;
-
- // Signs differ?
- if ( i != j ) return i;
-
- a = i < 0;
- b = k == l;
-
- // Either Infinity?
- if ( !xc || !yc ) return b ? 0 : !xc ^ a ? 1 : -1;
-
- // Compare exponents.
- if ( !b ) return k > l ^ a ? 1 : -1;
-
- j = ( k = xc.length ) < ( l = yc.length ) ? k : l;
-
- // Compare digit by digit.
- for ( i = 0; i < j; i++ ) if ( xc[i] != yc[i] ) return xc[i] > yc[i] ^ a ? 1 : -1;
-
- // Compare lengths.
- return k == l ? 0 : k > l ^ a ? 1 : -1;
-}
-
-
-/*
- * Check that n is a primitive number, an integer, and in range, otherwise throw.
- */
-function intCheck( n, min, max, name ) {
- if ( n < min || n > max || n !== ( n < 0 ? mathceil(n) : mathfloor(n) ) ) {
- throw Error
- ( bignumberError + ( name || 'Argument' ) + ( typeof n == 'number'
- ? n < min || n > max ? ' out of range: ' : ' not an integer: '
- : ' not a primitive number: ' ) + n );
- }
-}
-
-
-function isArray(obj) {
- return Object.prototype.toString.call(obj) == '[object Array]';
-}
-
-
-function toExponential( str, e ) {
- return ( str.length > 1 ? str.charAt(0) + '.' + str.slice(1) : str ) +
- ( e < 0 ? 'e' : 'e+' ) + e;
-}
-
-
-function toFixedPoint( str, e, z ) {
- var len, zs;
-
- // Negative exponent?
- if ( e < 0 ) {
-
- // Prepend zeros.
- for ( zs = z + '.'; ++e; zs += z );
- str = zs + str;
-
- // Positive exponent
- } else {
- len = str.length;
-
- // Append zeros.
- if ( ++e > len ) {
- for ( zs = z, e -= len; --e; zs += z );
- str += zs;
- } else if ( e < len ) {
- str = str.slice( 0, e ) + '.' + str.slice(e);
- }
- }
-
- return str;
-}
-
-
-// EXPORT
-
-
-BigNumber = clone();
-BigNumber['default'] = BigNumber.BigNumber = BigNumber;
-
-export default BigNumber; \ No newline at end of file
diff --git a/packages/instant/test/util/maybe_big_number.test.ts b/packages/instant/test/util/maybe_big_number.test.ts
index f32e33eb1..508e8aaf0 100644
--- a/packages/instant/test/util/maybe_big_number.test.ts
+++ b/packages/instant/test/util/maybe_big_number.test.ts
@@ -2,12 +2,9 @@ import { BigNumber } from '@0x/utils';
import { maybeBigNumberUtil } from '../../src/util/maybe_big_number';
-// import PrevBigNumber from './dependencies/prevbignumber';
-
const BIG_NUMBER_1 = new BigNumber('10.1');
const BIG_NUMBER_2 = new BigNumber('10.1');
const BIG_NUMBER_3 = new BigNumber('11.1');
-// const PREVBIG_NUMBER_1 = new PrevBigNumber('11.1');
describe('maybeBigNumberUtil', () => {
describe('stringToMaybeBigNumber', () => {
@@ -40,32 +37,29 @@ describe('maybeBigNumberUtil', () => {
});
});
- // describe('bigNumberOrStringToMaybeBigNumber', () => {
- // it('should return BigNumber (>=v8.0.0) constructed with value if type is string', () => {
- // const bn = maybeBigNumberUtil.bigNumberOrStringToMaybeBigNumber('10.1');
- // if (!!bn) {
- // expect(bn.toString()).toEqual('10.1');
- // }
- // });
- // it('should return undefined if value is NaN', () => {
- // expect(maybeBigNumberUtil.bigNumberOrStringToMaybeBigNumber('NaN')).toEqual(undefined);
- // });
- // it('should return undefined if value as string is not valid (i.e not numeric)', () => {
- // expect(maybeBigNumberUtil.bigNumberOrStringToMaybeBigNumber('test')).toEqual(undefined);
- // });
- // it('should return undefined if value as string is not valid (i.e not numeric)', () => {
- // expect(maybeBigNumberUtil.bigNumberOrStringToMaybeBigNumber('test')).toEqual(undefined);
- // });
- // it('should return BigNumber (>=v8.0.0) when passed a value as BigNumber (<v8.0.0)', () => {
- // const bn = maybeBigNumberUtil.bigNumberOrStringToMaybeBigNumber(PREVBIG_NUMBER_1);
- // expect(BigNumber.isBigNumber(bn)).toEqual(true);
- // });
- // it('should return BigNumber (>=v8.0.0) when passed a value as BigNumber (>=v8.0.0)', () => {
- // const bn = maybeBigNumberUtil.bigNumberOrStringToMaybeBigNumber(BIG_NUMBER_1);
- // expect(BigNumber.isBigNumber(bn)).toEqual(true);
- // });
- // it('should return undefined if value is not BigNumber or string', () => {
- // expect(maybeBigNumberUtil.bigNumberOrStringToMaybeBigNumber(true)).toEqual(undefined);
- // });
- // });
+ // this doesn't test coercing a pre v8.0.0 version of big number to desired version
+ describe('toMaybeBigNumber', () => {
+ it('should return BigNumber (>=v8.0.0) constructed with value if type is string', () => {
+ const bn = maybeBigNumberUtil.toMaybeBigNumber('10.1');
+ if (!!bn) {
+ expect(bn.toString()).toEqual('10.1');
+ }
+ });
+ it('should return undefined if value is NaN', () => {
+ expect(maybeBigNumberUtil.toMaybeBigNumber('NaN')).toEqual(undefined);
+ });
+ it('should return undefined if value as string is not valid (i.e not numeric)', () => {
+ expect(maybeBigNumberUtil.toMaybeBigNumber('test')).toEqual(undefined);
+ });
+ it('should return undefined if value as string is not valid (i.e not numeric)', () => {
+ expect(maybeBigNumberUtil.toMaybeBigNumber('test')).toEqual(undefined);
+ });
+ it('should return BigNumber (>=v8.0.0) when passed a value as BigNumber (>=v8.0.0)', () => {
+ const bn = maybeBigNumberUtil.toMaybeBigNumber(BIG_NUMBER_1);
+ expect(BigNumber.isBigNumber(bn)).toEqual(true);
+ });
+ it('should return undefined if value is not BigNumber or string', () => {
+ expect(maybeBigNumberUtil.toMaybeBigNumber(true)).toEqual(undefined);
+ });
+ });
});
diff --git a/packages/instant/test/util/order_coercion.test.ts b/packages/instant/test/util/order_coercion.test.ts
new file mode 100644
index 000000000..f7a958c9d
--- /dev/null
+++ b/packages/instant/test/util/order_coercion.test.ts
@@ -0,0 +1,103 @@
+import { BigNumber } from '@0x/utils';
+
+import { orderCoercionUtil } from '../../src/util/order_coercion';
+
+const ORDER = {
+ senderAddress: '0x0000000000000000000000000000000000000000',
+ makerAddress: '0x34a745008a643eebc58920eaa29fb1165b4a288e',
+ takerAddress: '0x0000000000000000000000000000000000000000',
+ makerFee: new BigNumber('0'),
+ takerFee: new BigNumber('0'),
+ makerAssetAmount: new BigNumber('200000000000000000000'),
+ takerAssetAmount: new BigNumber('10000000000000000000'),
+ makerAssetData: '0xf47261b00000000000000000000000008cb3971b8eb709c14616bd556ff6683019e90d9c',
+ takerAssetData: '0xf47261b0000000000000000000000000d0a1e359811322d97991e03f863a0c30c2cf029c',
+ expirationTimeSeconds: new BigNumber('1601535600'),
+ feeRecipientAddress: '0x0000000000000000000000000000000000000000',
+ salt: new BigNumber('3101985707338942582579795423923841749956600670712030922928319824580764688653'),
+ signature:
+ '0x1bd4d5686fea801fe33c68c4944356085e7e6cb553eb7073160abd815609f714e85fb47f44b7ffd0a2a1321ac40d72d55163869d0a50fdb5a402132150fe33a08403',
+ exchangeAddress: '0x35dd2932454449b14cee11a94d3674a936d5d7b2',
+};
+
+const STRING_ORDER = {
+ senderAddress: '0x0000000000000000000000000000000000000000',
+ makerAddress: '0x34a745008a643eebc58920eaa29fb1165b4a288e',
+ takerAddress: '0x0000000000000000000000000000000000000000',
+ makerFee: '0',
+ takerFee: '0',
+ makerAssetAmount: '300000000000000000000',
+ takerAssetAmount: '31000000000000000000',
+ makerAssetData: '0xf47261b00000000000000000000000002002d3812f58e35f0ea1ffbf80a75a38c32175fa',
+ takerAssetData: '0xf47261b0000000000000000000000000d0a1e359811322d97991e03f863a0c30c2cf029c',
+ expirationTimeSeconds: '2524636800',
+ feeRecipientAddress: '0x0000000000000000000000000000000000000000',
+ salt: '64592004666704945574675477805199411288137454783320798602050822322450089238268',
+ signature:
+ '0x1c13cacddca8d7d8248e91f412377e68f8f1f9891a59a6c1b2eea9f7b33558c30c4fb86a448e08ab7def40a28fb3a3062dcb33bb3c45302447fce5c4288b7c7f5b03',
+ exchangeAddress: '0x35dd2932454449b14cee11a94d3674a936d5d7b2',
+};
+
+const ORDERS = [ORDER, STRING_ORDER];
+
+describe('orderCoercionUtil', () => {
+ describe('coerceFieldsToBigNumbers', () => {
+ it('should coerce all fields specified to a big number', () => {
+ const coercedOrder = orderCoercionUtil.coerceFieldsToBigNumbers(STRING_ORDER, ['makerFee', 'takerFee']);
+ expect(coercedOrder.makerFee.toString()).toEqual('0');
+ expect(coercedOrder.takerFee.toString()).toEqual('0');
+ });
+ it("should throw if a field can't be found", () => {
+ expect(() => {
+ orderCoercionUtil.coerceFieldsToBigNumbers(ORDER, ['salty']);
+ }).toThrow("Could not find field 'salty' while converting fields to BigNumber.");
+ });
+ it('should not change value if not numeric string or big number', () => {
+ const obj = { number: 'number' };
+ const coercedObj = orderCoercionUtil.coerceFieldsToBigNumbers(obj, ['number']);
+ expect(coercedObj).toEqual({
+ number: 'number',
+ });
+ });
+ });
+ // Note: this doesn't test coercing pre v8.0.0 BigNumber versions to specified one used by 0x
+ describe('coerceOrderFieldsToBigNumber', () => {
+ it('should convert string values in order to big number', () => {
+ const coercedOrder = orderCoercionUtil.coerceOrderFieldsToBigNumber(STRING_ORDER);
+ expect(coercedOrder.makerFee.toString()).toEqual(STRING_ORDER.makerFee);
+ expect(coercedOrder.takerFee.toString()).toEqual(STRING_ORDER.takerFee);
+ expect(coercedOrder.takerAssetAmount.toString()).toEqual(STRING_ORDER.takerAssetAmount);
+ expect(coercedOrder.makerAssetAmount.toString()).toEqual(STRING_ORDER.makerAssetAmount);
+ expect(coercedOrder.salt.toString()).toEqual(STRING_ORDER.salt);
+ expect(coercedOrder.expirationTimeSeconds.toString()).toEqual(STRING_ORDER.expirationTimeSeconds);
+ });
+ it('should convert big number values in order to big number', () => {
+ const coercedOrder = orderCoercionUtil.coerceOrderFieldsToBigNumber(ORDER);
+ expect(coercedOrder.makerFee).toEqual(ORDER.makerFee);
+ expect(coercedOrder.takerFee).toEqual(ORDER.takerFee);
+ expect(coercedOrder.takerAssetAmount).toEqual(ORDER.takerAssetAmount);
+ expect(coercedOrder.makerAssetAmount).toEqual(ORDER.makerAssetAmount);
+ expect(coercedOrder.salt).toEqual(ORDER.salt);
+ expect(coercedOrder.expirationTimeSeconds).toEqual(ORDER.expirationTimeSeconds);
+ });
+ });
+ // Note: this doesn't test coercing pre v8.0.0 BigNumber versions to specified one used by 0x
+ describe('coerceOrderArrayFieldsToBigNumber', () => {
+ it('should convert string values and big numbers in orders to big number', () => {
+ const coercedOrders = orderCoercionUtil.coerceOrderArrayFieldsToBigNumber(ORDERS);
+ expect(coercedOrders[0].makerFee).toEqual(ORDER.makerFee);
+ expect(coercedOrders[0].takerFee).toEqual(ORDER.takerFee);
+ expect(coercedOrders[0].takerAssetAmount).toEqual(ORDER.takerAssetAmount);
+ expect(coercedOrders[0].makerAssetAmount).toEqual(ORDER.makerAssetAmount);
+ expect(coercedOrders[0].salt).toEqual(ORDER.salt);
+ expect(coercedOrders[0].expirationTimeSeconds).toEqual(ORDER.expirationTimeSeconds);
+
+ expect(coercedOrders[1].makerFee.toString()).toEqual(STRING_ORDER.makerFee);
+ expect(coercedOrders[1].takerFee.toString()).toEqual(STRING_ORDER.takerFee);
+ expect(coercedOrders[1].takerAssetAmount.toString()).toEqual(STRING_ORDER.takerAssetAmount);
+ expect(coercedOrders[1].makerAssetAmount.toString()).toEqual(STRING_ORDER.makerAssetAmount);
+ expect(coercedOrders[1].salt.toString()).toEqual(STRING_ORDER.salt);
+ expect(coercedOrders[1].expirationTimeSeconds.toString()).toEqual(STRING_ORDER.expirationTimeSeconds);
+ });
+ });
+});